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Terms of Use & Disclaimer
This report is published by Shanghai Climate Week and its partner institutions. All 
rights are strictly reserved. This report may not be reproduced or redistributed, 
in whole or in part, without the written permission of Shanghai Climate Week or 
any of its partner institutions, whether electronic, mechanical, photocopying, 
recording, or otherwise. Shanghai Climate Week disclaims any and all liability for 
actions undertaken by third parties in this respect.

The information and opinions in this report have been prepared by Shanghai 
Climate Week and its partner institutions. This report does not constitute 
investment advice and should not be relied on for such advice or as a substitute 
for consultation with professional accountants, tax, legal, or financial advisors. 
Shanghai Climate Week and its partner institutions have made every effort to 
use reliable, up-to-date, and comprehensive information and analysis. However, 
no representations or warranties are made regarding the accuracy of the 
information. 

Shanghai Climate Week and its partner institutions disclaim any obligation to 
update the information or conclusions in this report and shall not be held liable 
for any loss arising from any action taken or refrained from as a result of infor-
mation contained in this report or any reports or sources of information referred 
to herein or for any consequential, special, or similar damages, even if advised of 
the possibility of such damages. The report does not constitute an offer to buy 
or sell securities or a solicitation of an offer to buy or sell securities. 

Any unauthorized sale of this report is prohibited without the written consent of 
Shanghai Climate Week.

© Coral Bleaching, Liu Yicheng, Finalist of 2025 Climate and Sustainability Photography Awards

Shanghai Climate Week is a global platform dedicated to advancing 
climate action and sustainable development through innovation and 
international cooperation, guided by the principles of “China Action, 
Asia Voice, Global Standard.” This year, we are pleased to continue 
to present ClimateTech in Focus, which discusses Artificial Intelli-
gence as a key enabling infrastructure for sustainability, offering 
deeper insights to policymakers, industry leaders, and practitioners 
on how AI can strengthen energy systems, supply chains, and 
climate governance.

The Sino-International Entrepreneurs Federation is committed to 
helping public- and private-sector leaders achieve their goals by 
advising on strategy, policy, and delivery. As the Presenting Partner 
of this year’s ClimateTech in Focus, we underscore the critical role of 
aligning AI-driven innovation with measurable, real-world sustainabili-
ty impacts – empowering entrepreneurs and investors across 
regions to scale trusted, practical solutions that accelerate the tran-
sition to a low-carbon, resilient global economy.

Shanghai Climate Week

Sino-International Entrepreneurs Federation

© Coral Bleaching, Liu Yicheng, Finalist of 2025 Climate and Sustainability Photography Awards

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

0201



en years after the adoption of the 2030 Agenda 
for Sustainable Development, the international 
community continues to confront the widening 
gap between our ambitions and our collective 

United Nations University’s growing portfolio of 
initiatives illustrates a clear and urgent recognition: 
digital innovation must be mobilized in the service of 
climate objectives. As the research and education 
arm of the United Nations, United Nations University is 
committed to bridging science, policy, and capacity 
development to build a sustainable, inclusive, and 
digitally empowered future. Our work supports the UN 
system, governments, academic institutions, and 
communities in translating ambition into implementa-
tion: by developing the skills needed for data-driven 
decision-making, strengthening institutional readi-
ness, advancing ethical and inclusive governance of 
emerging technologies, and fostering cooperation 
across sectors, disciplines, and regions. This integrat-
ed approach reflects not only the demands of our 
time but also the values at the heart of sustainable 
development.

This new edition of ClimateTech In Focus, dedicated 
to AI for Sustainability, offers timely insights into how 
technological innovation is reshaping climate and 
development pathways. Through case studies, expert 
dialogues, and analysis across energy, agriculture, 
finance, education, and environmental management, 
the report highlights both the opportunities and the 
responsibilities associated with deploying AI in 
support of sustainable development. It also draws 
attention to the essential enabling conditions 
required to scale these solutions, including reliable 
energy systems, coherent governance frameworks, 
adequate financing, and the continuous development 
of human capital.

The years ahead will be decisive. The choices we 
make now will determine the trajectory of our shared 
future. I remain confident that meaningful progress is 
possible when governments, the private sector, 
academia, and civil society work together with a 
shared commitment to inclusion, equity, and 
long-term sustainability. The United Nations will 
continue to play its part by supporting countries to 
harness the benefits of AI and digital innovation in 
ways that are safe, ethical, and aligned with the vision 
of the 2030 Agenda.

Preface I

Under-Secretary-General, United Nations
Rector, United Nations University

Dr. Tshilidzi Marwala

T

Preface II 

cross the Asia-Pacific and the world, one 
message is unmistakably clear: the twin forces of 
technological innovation and collective action will 
define our ability to confront the climate crisis.

Among these technologies, artificial intelligence 
stands out as a catalyst of unprecedented potential – 
reshaping how we predict risks, optimize resources, 
and design the low-carbon systems of tomorrow. AI is 
rapidly transforming economies and “holds immense 
potential to unlock innovation, drive productivity, and 
promote inclusive growth” – if we guide its use 
responsibly and inclusively.

The urgency of our shared mission has not diminished; 
if anything, it has become more immediate as climate 
impacts intensify each year. What continues to evolve 
are the tools at our disposal – and the partnerships 
that strengthen our response. At the forefront of this 
new era, AI offers an extraordinary opportunity to 
accelerate sustainable innovation, enhance efficiency, 
and deepen cooperation. However, we must ensure 
that this progress benefits all and leaves no one 
behind. 

Through initiatives such as the Seminar on Responsi-
ble Adoption of General-Purpose AI and the Asia-
Pacific AI Governance Accelerator, PECC has been 
fostering frank dialogue on responsible AI governance 
– highlighting the importance of ethics, transparency, 
and trust in AI deployment. Likewise, ABAC’s contin-
ued engagement with APEC Leaders has underscored 
that technological progress must go hand-in-hand 
with economic resilience, growth finance, and 
human-centered development. We have consistently 
emphasized that innovation should not come at the 
cost of equity or sustainability. Public-private 
collaboration is key: by working together, governments 
and businesses can transform emerging 

Antonio Basilio

A

technologies like AI into engines of sustainability and 
shared prosperity.

Building on our previous report, ClimateTech in Focus: 
Innovations for a Greener Supply Chain, which 
explored how technology can strengthen supply 
chain resilience, this year’s edition – Artificial Intelli-
gence for Sustainability – examines how AI is 
reshaping the future of infrastructure, finance, and 
education. From smarter energy grids and climate-
resilient infrastructure to growth finance innovation 
and personalized education for sustainability, AI is 
opening new frontiers. This report offers concrete, 
forward-looking recommendations to ensure that the 
AI revolution contributes not only to competitiveness 
but also to equity, trust, and climate action. Our goal 
is to harness AI to amplify what works in sustainability 
– optimizing resource use, democratizing knowledge, 
and accelerating low-carbon innovation – while 
safeguarding privacy, ethics, and inclusivity.

We stand at a pivotal moment where technology and 
responsibility intersect. The decisions we make today 
will define the legacy we leave for our children and 
grandchildren. I urge all stakeholders – businesses, 
governments, academia, and civil society – to seize 
this opportunity to harness the transformative power 
of AI, not as an end in itself, but as a powerful partner 
in building a sustainable, inclusive, resilient, and 
prosperous Asia-Pacific for all. By aligning innovation 
with stewardship and collective action, we can ensure 
that AI becomes a driving force in our quest for a 
future where economic growth and environmental 
well-being advance hand in hand.

progress. Climate impacts are accelerating, and while 
no region is spared, their effects are felt most acutely 
among those with the fewest resources to respond. 
These realities underscore the urgency of strengthen-
ing resilience, expanding access to sustainable 
energy, and ensuring that all countries have the 
capacity to participate meaningfully in the global 
response to climate change.

In recent years, science, technology, and innovation 
have offered new avenues for advancing this work. 
Artificial intelligence is becoming an increasingly 
significant tool for improving how societies anticipate 
climate risks, plan for changing conditions, and 
manage natural resources. We see its growing role in 
early warning systems, climate modelling, renewable 
energy integration, agriculture, water management, 
and urban planning. These developments point to AI’s 
potential to support more effective and equitable 
climate action.

However, the benefits of AI will only be realized if 
countries have the skills, infrastructure, and institu-
tions required to use these technologies responsibly. I 
often highlight the importance of “closing the digital 
divide” by strengthening national capacities so that all 
countries – particularly those in the Global South – 
can access the increasing opportunities emerging 
from digital transformation. Access and opportunity 
must be available to all. This principle is essential not 
only for fairness, but also for the credibility and 
effectiveness of the global climate action.

Director, APEC Business Advisory Council
Chairman, Pacific Economic Cooperation Council 
Philippine National Committee
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Executive Summary
objectives, recognizing and addressing its environ-
mental footprint, and ensuring that data, models, and 
computational resources do not become new 
sources of exclusion. It also requires respecting 
national development pathways and data sovereignty, 
while fostering mechanisms for trust-based coopera-
tion across regions.

Yet technology alone is insufficient. Sustainable 
impact depends on people, institutions, and policies. 
Capacity building – from digital literacy to advanced 
technical expertise – must be treated as a strategic 
priority. Data infrastructure must be developed as a 
public good, not a private bottleneck. And global 
governance frameworks must evolve to reflect the 
realities and aspirations of developing countries, 
ensuring that international rules are not only techno-
logically sophisticated, but also development-orient-
ed and fair.

The coming ten years will be decisive. They will 
determine whether artificial intelligence becomes a 
catalyst for a more balanced, climate-resilient global 
development model, or whether it entrenches new 
forms of inequality. This report calls on policymakers, 
business leaders, and innovators to act with foresight 
and responsibility – to invest in cooperation rather 
than fragmentation, in shared capabilities rather than 
narrow advantages. By embedding AI within a 
framework of South-South solidarity and global 
inclusiveness, we can ensure that technological 
progress serves as a bridge toward sustainability, 
rather than a fault line of division.

Artificial intelligence should not be an exclusive asset 
of a few, but a shared instrument for collective 
resilience and green transformation. The opportunity 
before us is profound. The responsibility is even 
greater. How we choose to act now will shape not 
only the future of climate action, but the contours of 
global development for generations to come.

Founding Director, United Nations Office for South-South 
Cooperation
Senior Strategic Advisor, Shanghai Climate Week

Zhou Yiping

e are entering a decisive decade in which the 
trajectories of climate action and technological 
development are becoming inseparably 
intertwined. Climate risks are no longer abstract 

projections but lived realities across regions, econo-
mies, and societies. At the same time, artificial 
intelligence is rapidly evolving from a frontier technol-
ogy into a foundational infrastructure shaping how we 
generate knowledge, allocate resources, and govern 
complex systems. The question before us is no longer 
whether AI will influence sustainable development, but 
whose priorities it will serve, and on what terms.

For the Global South, this moment carries particular 
weight. Many developing countries face the dual 
challenge of acute climate vulnerability and structural 
constraints in technology, finance, and infrastructure, 
yet these same countries also hold immense potential 
to leapfrog traditional development pathways. 
Artificial Intelligence, if designed and deployed with 
sustainability in mind, can become a powerful enabler 
of such a transition – supporting climate-resilient 
infrastructure, accelerating clean energy integration, 
improving agricultural productivity, and enhancing 
transparency in green finance. If misaligned, however, 
AI risks reinforcing existing asymmetries, deepening 
the divide between technology producers and 
technology recipients. From the perspective of 
South–South cooperation, this is a defining inflection 
point. What is required instead is a shift toward 
shared innovation, co-development, and collective 
capacity building.

This report argues that AI must be understood not 
merely as a tool, but as a system that embeds values, 
incentives, and power structures. Its integration into
of inclusivity, sustainability, and long-term resilience. 
This means aligning AI development with low-carbon 

W

Artificial intelligence (AI) is no longer a peripheral tool 
in sustainability efforts. Across energy systems, 
manufacturing, logistics, finance, certification, 
education, and public governance, AI is increasingly 
embedded as operational infrastructure – shaping 
how societies anticipate risk, allocate resources, 
enforce rules, and coordinate action at scale. This 
report examines how AI is already transforming 
climate mitigation and adaptation in practice, why 
progress remains uneven, and what institutional 
conditions are required to translate technical 
capability into durable public value.

AI’s greatest contribution to sustainability lies not in 
breakthrough algorithms, but in its ability to reduce 
uncertainty, compress decision cycles, and align 
complex systems under real-world constraints. In 
energy and manufacturing, AI supports grid stability, 
renewable integration, predictive maintenance, and 
energy-carbon co-optimization, helping systems 
move along the spectrum between resilience and 
efficiency. In shipping and logistics, AI has become 
indispensable for navigating tightening emissions 
regulations, volatile operating conditions, and Scope 3 
accountability, transforming logistics from a carbon 
blind spot into a governable lever for decarbonization. 
In finance, AI is shifting climate risk from narrative 
disclosure into decision-grade intelligence – embed-
ding physical and transition risks into pricing, capital 
allocation, and supervisory frameworks. In certifica-
tion and global trade, AI is reconfiguring compliance 
from document-driven procedures into data-driven 
trust infrastructure, enabling verifiable carbon 
transparency as a condition of market access.

Yet the report finds that technical readiness consis-
tently outpaces institutional readiness. Many AI 
systems reach the pilot or MVP stage rapidly but 
struggle to scale to large-scale deployment. The 
binding constraints are rarely funding or model 
performance; instead, they arise from fragmented 
data ownership, legacy infrastructure, unclear 
regulatory pathways, limited operational capacity, and 
weak trust between innovators, regulators, and 
adopters. As a result, AI innovation in sustainability 
often stalls precisely at the point where real impact 
should begin.

To address this gap, the report argues for a shift in 
how AI innovation is incubated and governed. 
Effective incubation goes beyond capital provision 
and emphasizes deployment readiness: shared 
operational services, access to secure compute and 
data environments, domain-specific mentorship, 

predefined use cases with real buyers, and regulatory 
sandboxes that allow supervised learning before 
full-scale approval. Cross-border and networked 
incubation models are emerging as particularly 
effective, enabling talent, technology, and market 
feedback to circulate across regions rather than 
remaining siloed within national ecosystems.

Education and talent development are equally 
decisive. With AI already embedded in everyday 
learning, the question is no longer whether students 
will use AI, but how education systems guide its use. 
The report highlights a shift from rote knowledge 
reproduction toward critical thinking, interdisciplinary 
problem-solving, and project-based learning ground-
ed in real sustainability challenges. Successful 
systems treat AI as a learning assistant rather than an 
answer machine, and they invest in institutional 
pathways that allow young people to move from 
education into public service, entrepreneurship, and 
policy influence. Countries competing effectively for 
AI talent combine flexible visas and incentives with 
meaningful roles, practical testbeds, and long-term 
integration into national innovation systems.

Equity and openness emerge as defining challenges 
of the AI era. While open data and shared models can 
accelerate innovation, poorly governed openness 
risks deepening data inequality, particularly for the 
Global South. The report emphasizes that openness 
must be conditional and governed – with clear usage 
rights, traceable provenance, and mechanisms that 
ensure local institutions retain control over locally 
generated data. Inclusive AI deployment is already 
visible in resource-constrained settings, where 
lightweight models, community data systems, and 
public-sector use cases deliver tangible benefits in 
mobility, disaster preparedness, public health, and 
agriculture. These experiences demonstrate that AI 
can support leapfrog development when paired with 
appropriate governance and infrastructure.

AI governance is not a brake on climate innovation 
but its enabling condition. Effective governance 
requires risk-proportionate oversight that builds trust, 
transparency, and accountability – distinguishing 
decision-support tools from systems exercising 
authority, and ensuring explainability, human 
oversight, and public legitimacy for high-impact uses. 
When treated as a learning system supported by 
capacity building and cross-border cooperation, 
governance enables AI to scale responsibly for 
climate action rather than constraining it.
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AI EVOLUTION AT 
CROSSROADS:
WHERE ARE WE HEADING?

© Cerulean Odyssey, Qi Chang, Finalist of 2025 Climate and Sustainability Photography Awards

President of Mozambique

AI and other monitoring methods allow near real-time, 
transparent validation of carbon results, while strength-
ening disaster preparedness and enabling anticipatory 
action – saving lives, reducing costs, and building com-
munity resilience.

H.E. Daniel Francisco Chapo
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Following a monumental paradigm shift, the pressing 
question arises: where are we heading? Artificial General 
Intelligence (AGI) is the theoretical capability of machines 
to replicate human-like cognition, enabling them to 
understand, learn, and perform any intellectual task, unlike 
current narrow AI systems restricted to specific domains. 
First mentioned in Samuel Butler’s Erewhon (1872) as 
fiction, AGI is now a serious research goal, and systems like 
GPT are seen as potential steps toward it. Public informa-
tion shows some industry leaders from top AI companies 
speculate AGI will arrive by 2030 or sooner.

Many theoretical scientists outside the tech industry 
remain skeptical, arguing that current progress is not a 
viable path to AGI.

The history of AI is marked by cycles of optimism and 
disappointment, often referred to as “AI summers” and “AI 
winters.” Each cycle shows both the promise of new 
breakthroughs and the limits that follow. The current 
excitement around LLMs may be a real step forward, but it 
also brings back concerns about overpromising and the 
need for realistic expectations.The Past, Emergence, and Destination 

of Artificial General Intelligence
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Recognizing GPT’s limitations, humanity 
develops entirely new frameworks to 
achieve AGI through a fundamental 
reimagining of intelligence.

AGI through Paradigm Shift
AGI remains unattainable due to inherent 
limitations of computational systems or 
the irreducibility of certain aspects of 
human cognition.

Never Reach AGI in Upcoming Future
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Incremental improvements to GPT-like 
architectures lead to AGI capable of 
outperforming human intelligence across 
all domains.

AGI through GPT Ascension

27% 59% 14%

Large Language Models (LLMs) mark a major change in 
AI. As these systems scale, especially Generative 
Pre-trained Transformer (GPT) models, they can develop 
skills like reasoning and problem-solving without being 
explicitly programmed, and these gains are still hard to 
fully explain. This has drawn strong interest from

researchers and industry. Many report contributors and 
scholars agree that LLMs provide a clear substitutive 
advantage over traditional AI methods. As a result, LLMs 
have become a leading trend, changing how work is 
done across many fields.

This growing interest has increased research into emerging technologies, shifting focus from traditional AI 
methods to advanced models. Researchers are applying a unified GPT and agent framework to large-scale 
language understanding, computer vision, reasoning, and multimodal generation. Industry leaders are using this 
approach to address high-impact problems in decision-making, optimization, market research, and evidence 
synthesis, indicating broader adoption of LLMs in real-world use.

Figure 1.1a LLMs vs. Traditional AI Approaches

Source: WeCarbon Analysis. Enabled by the Lens

Source: WeCarbon Analysis

SVM GPT CNN Random ForestBERT GAN

Figure 1.1b Scholarly Work by Keywords

Figure 1.1c AI Evolution Pathways

We are on the verge of absolute irreversibility of climate change. It’s really now that it’s being decided. In this decisive 
moment, the tools we choose to develop and deploy – including artificial intelligence – will inevitably shape our capacity to 
anticipate, to act, and ultimately to remain within planetary boundaries. In my eyes, we have no choice but to find a model of 
economic development compatible with those boundaries.

H.E. Corinne Lepage
Former French Minister of the Environment & Former Member of the European Parliament
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Sustainability, defined as meeting human needs today 
without compromising those of future generations, 
requires that technological progress remain within 
environmental limits. Scaling up AI will inevitably increase 
the energy footprint, creating a paradox: both pressure 
on global net-zero goals and a powerful solution to a 
leaner supply chain. 

Training the GPT-3 model with 175 billion parameters, 
which is no longer considered state-of-the-art as of 
now, created a footprint of over 1 GWh of electricity. 11  

Contributors to the report believe AI is driving the 
expansion of cloud infrastructure and leading to the 
energy footprint of data centers becoming even more 
critical. The IEA and the report’s contributors project at 
least a 30% year-on-year growth in electricity consump-
tion for the world’s AI-enabled servers , as a baseline 
scenario assuming the current level of AI growth 
sustains. 12,13,14,15,16

Inference will become the primary driver of electricity 
demand once AI is deployed on a global scale. In a 
single year, inference can emit more than 25 times the 
emissions of total training. If the forecast still shows 
that training dominates emissions totals, it suggests 
training demand is growing even faster rather than 
slowing. Contributors expect this gap to continue 
through 2030 because models keep getting larger, 
pushing training needs to rise as fast as, or faster than, 
global inference use.

This report draws on cross-disciplinary research from a diverse panel of contributors. While perspectives across 
academia and industry remain divided, a preliminary consensus emerges: achieving AGI will require at least one major 
theoretical breakthrough beyond current approaches. Grounded world models and meta-learning are considered the 
most necessary among other technologies. 

Advances in computational capacity and bandwidth 
remain decisive constraints on more advanced adop-
tion of AI services. Contemporary deployments 
typically operate within service-level throughput limits 
of roughly 500,000 tokens per minute for text genera-
tion and approximately 2 MB/s for image data, which 
restrict interactive applications to modalities that can 
be streamed within these bounds. As a result, commer-
cially available video generation remains predominantly 

non-interactive and computationally intensive, 
while domains such as autonomous driving continue 
to depend on traditional methods because portable 
compute and low-latency infrastructure remain 
insufficient. Whether these constraints can be fully 
resolved is uncertain, yet continued progress in 
computational capacity is widely regarded as the 
central enabler for overcoming them and moving 
toward more general forms of intelligence.

The AI &
Sustainability Paradox

Figure 1.1d Top 5 Critical Breakthroughs Expected Before Reaching AGI

AI-related energy use in global 
electricity use in 2030
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AI is becoming an enabler across every major sustain-
ability objective, from lowering emissions and improving 
resource efficiency to strengthening the resilience of 
essential systems like food, water, and even how we live 
in cities. AI helps us optimize how we produce and 
consume energy, manage natural resources, and operate 
entire value chains more efficiently.

Dr. Lamya Fawwaz
Executive Director, Masdar

Source: ClimateTech In Focus Responding Contributors
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AI’s sustainability paradox is the conflict between its rising energy use and the need for its benefits to support 
climate and human development goals. AI can improve human welfare, but it may also contribute to global warming 
or resource depletion. It is the mandate of the human beings to align AI research, infrastructure, and governance so 
AI delivers more positive impact than environmental costs. The next sections explain how to reduce the environmen-
tal footprints of AI through advances in computing architectures, energy systems, and policy design. 

Contributors to this report generally view model downsizing as the most effective approach over the next 5-10 years 
for easing compute and sustainability constraints, ahead of improvements in chip efficiency and further expansion 
of large-scale centralized AI cloud infrastructure. 

Model downsizing in the More-than-Moore regime is one of the few ways to grow AI services without matching 
increases in energy use, carbon emissions, and material demand. Most real-world tasks, especially on edge devices, 
do not need general-purpose intelligence. They require focused, task-specific performance, so smaller models are 
often sufficient and more energy-efficient. Knowledge distillation, pruning, and quantization reduce parameter count, 
memory usage, and compute load, delivering similar performance at much lower computational cost. 17,18

Moore’s Law began as Gordon Moore’s observation 
that the number of transistors on an integrated circuit 
would roughly double every two years, leading many 
to expect ongoing gains in performance and lower 
costs. That trend is now slowing at advanced nodes 
around 3 nm and below, where further scaling faces 
increasing physical and economic limits from quan-
tum tunneling, power density, leakage currents, and 
the rising complexity and cost of extreme ultraviolet 
(EUV) lithography. As a result, scaling no longer reliably 
delivers proportional reductions in energy per 
operation or cost per unit of compute. Most perfor-
mance gains now come from architectural 

specialization, such as tensor cores and advanced 
packaging, which increase system throughput but 
often add design complexity and can raise total 
system power use at scale.

This More-than-Moore regime shift fundamentally 
reshapes the sustainability landscape of AI hardware: 
as single-device optimization approaches its physical 
and architectural limits, further scaling of AI perfor-
mance becomes an engineering, energy, capital, and 
societal coordination challenge predominantly, 
pending the next breakthrough in fundamental 
science.

Empirical measurements show that INT8 or FP8 
inference typically reduces energy use per inference 
by 40 to 70% compared with FP32 in compute-bound 
workloads, depending on the workload and memory 
behavior. Pruning can enable sub-watt neural infer-
ence on embedded platforms. 18,19 Because inference 
typically accounts for most lifecycle emissions of 
deployed AI systems globally, these per-inference 
savings will add up to a total reduction in CO2 reduc-
tions. 19 Combined with edge deployment,  

Balancing AI’s rapidly escalating compute demand and sustainability requires rethinking about where computing 
happens and how efficiently it runs. Specifically there are two distinct pathways:

Lowered energy consumption by shifting 
to INT8/FP8 quantization

40–70%

Moore Law, or More Cloud?

Smarter, Greener, but Not Bigger Model

Figure 1.2c Optimization & Hyperscaling Goals

Figure 1.2d Key Methods for Model Downsizing

Optimization (OPEX-driven) Hyperscaling (CAPEX-driven)

Maximize operational efficiency by more efficient 
chips, models, architecture, and encapsulation

More efficient chips with near-memory comput-
ing, quantization, and specialized GPU / ASICs

Smaller AI models through architectural efficiency 
(model downsizing)

Maximize capital efficiency by higher throughput 
and lower latency for centralized AI datacenters

More massive data centers with massive GPU / 
TPU clusters, high-speed backbone connection, 
and centralized scheduling 

Scale via more hardware and larger models

Scale via more efficient units and smaller models

Downsize by removing 
redundant weights and 
channels

Maintain accuracy by 
preserving the model’s 
effective expressive 
subspace

Downsize by reducing 
precision from FP32 to 
INT8/FP4

Knowledge Distillation Pruning

Technology

Reduces compute, 
memory, and inference 
energy; enables on-device 
and edge deployment

Reduce FLOPs to 
enable lightweight 
edge inference

Reduce arithmetic 
energy and bandwidth to 
enable high-throughput 
low-power execution

For
Sustainability

Quantization

Maintain accuracy by 
reasoning traces, interme-
diate layers, and other 
distilling techniques

Downsize to smaller 
parameter count

Maintain accuracy by 
calibration and Quanti-
zation-aware-training 
(QAT)

Figure 1.2b Investment to Address Compute Challenge

Investment into R&D of more 
efficient Al models

Investment into more efficient 
silicon chips

Investment into infrastructure of 
centralized, large-scale Al cloud

computing

Investment into new computing
paradigms, such as quantum,
neuromorphic, and photonic

Investment into the construction
 of decentralized mechanisms, 
such as “internet of compute”

Second Priority First Priority Third Priority
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compact models also reduce communication energy 
by replacing large raw-data transfers with smaller 
semantic outputs, delivering multiplicative energy 
savings across billions of devices. Model downsizing 
also lowers carbon footprint in hardware, reduces 
cooling water demand, and slows upgrade cycles for 
high-end accelerators. As a result, software compres-
sion is now a primary sustainability factor in 
large-scale AI, alongside energy-efficient hardware 
design and hyperscale infrastructure investment.

Recent advances in training efficiency show that 
improving training frameworks can reduce redundant 
computation and energy use, not just by compressing 
models for inference. Early stopping tracks loss curves

and other convergence signals and ends runs that are 
unlikely to perform well, saving compute, energy, and 
emissions. In generative molecular modeling, early 
stopping can sometimes predict final performance 
using about 20% of the planned compute. Data-centric 
methods, such as subset selection and active learning, 
also reduce waste by identifying redundant training 
examples. By selecting the most informative, diverse, or 
uncertain samples, models can often reach similar 
quality with less data and computation. 20,21,22 This 
less-is-more approach helps limit growth in training 
energy use and makes algorithmic and data-efficiency 
methods key tools for sustainable AI, alongside infer-
ence compression, hardware efficiency, and edge 
deployment.

Michael Victor N. Alimurung, City Administrator of Quezon City, highlights that you can’t talk about AI if edge infra-
structure doesn’t exist – AI assumes your cameras and sensors are connected. In an edge cloud hybrid system, each 
workload must determine where to be placed in the appropriate environment and architecture. The report outlines 
four functional regimes in a four-quadrant model: reflexive, embedded, systemic, and applicable. It does not aim to 
fully categorize AI. It offers a practical way to classify AI-enabled systems based on two deployment constraints: 
latency tolerance and aggregate compute demand.

Point positions indicate dominant operational regimes under typical deployment assumptions. Many AI-enabled 
systems span multiple regimes across different stages of their lifecycle, including training, inference, and orchestra-
tion. Deployment is often flexible and primarily shaped by cost, governance, or organizational constraints rather than 
real-time or scale requirements.

Edge-Cloud Hybrid AI as the Future

This report classifies latency tolerance in terms of response coupling modes rather than absolute time thresholds:

Real-time denotes tightly coupled control loops where delayed responses invalidate system correctness. 
Sub-second refers to interactions where small delays are tolerable, but perceptible latency degrades usability or 
performance.
Continuous systems allow delayed computation but require progressive, streaming outputs to maintain situation-
al awareness or interaction flow.
Asynchronous systems decouple request and response entirely, allowing results to be retrieved after extended 
delays without impacting task execution.

Figure 1.2e Main Patterns of AI Use Cases by Throughput and Latency Tolerance

Source: WeCarbon Analysis

Systemic
 Cloud-first

Applicable
Cost-first

Reflexive
Performance-first

Embedded
Edge-first

Real-time, high-frequency decision systems 
operating in tight feedback loops. These use 
cases typically rely on edge-resident inference 
for immediacy, complemented by cloud-side 
training and orchestration.

Low-latency, localized intelligence deployed 
close to devices or physical processes. These 
use cases prioritize responsiveness, reliability, 
and data locality, making edge-side execution 
the dominant approach.

Knowledge-centric applications with flexible 
latency requirements, focused on reasoning, 

synthesis, and decision support. Deployment is 
generally indifferent and not constrained by 

scale or real-time execution.

High-throughput workloads with high latency 
tolerance, primarily used to optimize, simulate, or 
coordinate large-scale systems. These use cases 

favor centralized cloud infrastructure for 
scalability and global context.
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Hyperscale facilities demonstrably outperform distributed computing in 
energy efficiency per unit of computation. Best-in-class hyperscale data 
centers report site-level PUE values approaching 1.10 under favorable 
climatic and operational conditions, compared to a global industry 
average of 1.55, implying a 40% reduction in non-compute energy 
overhead through centralized optimization. 23 Leading examples of 
AI-focused facilities colocated with renewable generation achieve 
90–95% hourly carbon-free electricity matching in selected regions, 
significantly reducing Scope 2 emissions relative to carbon-intensive 
regional grids. Cooling innovations are comparable: liquid immersion and 
free-air cooling reduce cooling energy demand by 30–50% relative to 
conventional chiller-based systems. 24

Hyperscale 
Sustainable AI Data Center

Hydropower                 Wind           

Solar                              Other

Public CFE Datastreams                   Seawater Cooling

Olkaria Geothermal DC Campus

Stargate Al Data Center

Shanghai Lingang Underwater Data Center
SenseTime’s AlDC

Guizhou data centers-Gui‘an Supercomputing Center

Centrin Data Ulanqab Low-Carbon Computing Base

China Unicom Zhongwei Cloud Data Center
Xinjiang Renewable Al Cluster

Luleå Data Center CampusLuleå Data Center Campus
ICE02 Data Center

EcoDataCenter 

Telehouse SouthKillellan Al Growth Zone

CoreSite VA3
Northern Virginia Cluster

Fairwater Data Center

MEO Covihã Data Center
SINES DC Campus

lron Mountain LON-2

Apple Viborg Data Center

Google Belgium Campus 
Horinger Data Center Cluster

Qinghai Clean Energy + Computing Base

Yajiang-1 AdvancedAl Computing Center

Moro Hub Green DC at 
MBR Solar Park

NEOM Net-Zero Al Data Center

QTS Atlanta Metro

Data City, Texas

Switch Citadel Campus

Switch SuperNAP
Vantage Phoenix Campus

Apple Mesa Data Center

Eagle Mountain
Data Center

Aeonian AI Factory

Tamboré Campus

Figure 1.3a Map of Selected Renewable-powered Hyperscale Data Centers

Source: SenseTime

Beyond data centers, SenseTime’s grounded world model, 
Kaiwu, provides an efficient, controllable synthetic data 
generation method to reduce dependence on real-world 
data in assisted driving and embodied intelligence, 
lowering energy use from physical-device training and 
reducing real-world intervention.

Since 2022, SenseTime has completed energy-saving 
retrofits in its office building, reducing greenhouse gas 
emissions such as CO2 by nearly 95 tons per year, and 
includes sustainability requirements in supplier evalua-
tions, such as environmental management, hazardous 
substance control, labor rights protection, and employee 
training.

When AI learns to manage its own electricity use carefully, 
we move closer to a greener digital future.

As AI adoption accelerates, computing demand and electricity use rise together, making energy efficiency a core 
constraint. SenseTime’s “Compute Power and Electricity Coordination Platform” in Lingang, Shanghai, China, improves both 
compute utilization and power management at the SenseTime Lingang Intelligent Computing Center.

An integrated training and inference architecture boosts utilization. The platform monitors total, real-time, and available 
compute plus training and inference workloads, enabling fine-grained, cross-region scheduling and energy-aware 
operating strategies. Off-peak workload shifting reduces idle waste and raises effective compute output per MW by 
150%. In inference, it delivers a 4x increase in QPS at the same compute and electricity cost, with elastic, on-demand 
scaling to reduce large-scale inference cost.

An energy large model monitors and predicts electricity use, real-time load, adjustable load, and PUE, and optimizes 
dispatch and efficiency. Built on SenseTime’s large model and partnering energy algorithm architecture, it predicts the 
next 15 minutes of power demand and generates optimal dispatch strategies automatically. Reported performance: 90% 
to 95% demand forecast accuracy and 95%+ decision accuracy. Results at Lingang AIDC show annual PUE below 1.28 and 
3,000,000 kWh of electricity saved per year.

CASE STUDY 1 Compute–Power Co-Optimization Platform

Compute infrastructure is not only the foundation of 
artificial intelligence; it is becoming a critical node in 
the energy transition and climate action. We are 
working to translate ‘green sustainability, ethical 
governance, and inclusive empowerment’ from 
industry aspirations into measurable, operational 
standards for next-generation infrastructure. In doing 
so, we are putting into practice our mission of staying 
committed to original innovation and enabling AI to 
lead human progress.

Dr. Xu Li
Chairman and Chief Executive Officer, SenseTime

Compute Management

Power Management

Source: WeCarbon Analysis

Note: Energy icons indicate primary renewable energy sources associated with each site.
Symbol size do not represent installed capacity, electricity output, or actual energy consumption. 
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AI date centers have a distinct electricity profile. Once 
built, they run at a steady, near-continuous load and 
can operate for decades. Their scale, scarcity, and 
stable demand make them attractive for renewable 
energy financing. For developers and lenders, long-term 
predictable electricity demand lowers revenue swings 
and demand risk, which improves project bankability 
and reduces the cost of capital for new renewable 
generation. 31 Mohammed Abdul Mujeeb Khan, Project 
Manager at Clean Rivers, also added that, to mitigate 
AI’s carbon footprint, regulatory frameworks should 
require full-life-cycle emissions reporting for AI projects 
and enforce the use of renewable-powered data 
centers.

Peng Yucheng, Chief Executive Officer of Midas 
Innovation Group, notes that AI is shifting from a cost 
center to a responsibility center and that its carbon 
footprint is no longer a hidden cost. AI data centers are 
also becoming anchor customers for clean energy 
projects. These structures strengthen the case for 
large solar and wind projects and align digital infra-
structure growth with energy system expansion. In 
practice, this accelerates financing and creates a 
feedback loop in which reliable, clean power supports 
AI deployment and AI demand helps expand renewable 
energy systems. 32

Hyperscale data center growth is highly concentrated and requires major capital. Global investment is projected to 
reach $6.7 trillion by 2030, including about $5.2 trillion for AI-capable compute facilities. This continues to concen-
trate infrastructure in a small group of large firms and in markets with low-cost electricity and enough grid capacity. 23 
Many hyperscale sites already use about 100 MW or more per facility. Several new projects are requesting 100 to 300 
MW at the grid interconnection stage, adding significant new demand to regional power systems. 24

If clean generation and transmission do not expand 
fast enough, electricity demand from hyperscale 
facilities could grow faster than the decarbonized 
supply. This can push grids to rely more on existing 
fossil generation or delay plant retirements, increasing 
local carbon intensity and adding operational strain to 
power systems. 25 Increased centralization also 
concentrates computing capacity in a limited number 
of countries and firms. Where renewable buildout 
cannot keep up with AI-driven demand, the gap 
between compute growth and clean energy scaling 
increases pressure on host-region energy systems. 26

Governments and utilities therefore treat AI cloud 
infrastructure as strategic and are intervening in 
energy procurement, grid expansion, and interconnec-
tion rules to manage reliability and security risks. 27

Leadership in AI computing is widely seen as a 
strategic asset, prompting state-backed hyperscale 
cloud growth in the United States, the Gulf, and East 
Asia. The UAE’s Stargate program in Abu Dhabi is a 
partnership involving G42 and global leading tech 
firms. It plans about 5 GW of AI data centre capacity, 
starting with an initial phase of about 1 GW powered 
by nuclear, solar, and gas. The program positions AI 
infrastructure alongside power plants and industrial 
zones in national development planning. Sameer Al 
Shethri, Vice President of the National Industrial 
Development Center, indicates that AI has become a 
primary driver and the heartbeat of industrial com-
petitiveness and sustainability in the Kingdom of 
Saudi Arabia. China is taking a similar approach 
through its state-coordinated “East-to-West Com-
puting” strategy. It links extensive AI use cases in East 
China with data centre clusters in West China 
powered by large-scale wind, solar, and hydropower, 
integrating sustainable AI computing into long-term 
grid and regional planning.

Geography and grid design strongly affect the carbon intensity of hyperscale data centers. Zhou Yiping, Founding 
Director of the United Nations Office for South-South Cooperation, notes that the snowballing growth of AI energy 
use is driving potential conflicts between AI development objectives and sustainability, creating hidden costs for 
society. Recent studies find that hyperscale data centers are becoming long-term, stable “super offtakers” of 
electricity, tying AI infrastructure closely to regional power systems.28

Over 60% of global hyperscale data center capacity, measured in commissioned IT power (MW), is concentrated in 
approximately 20 major metropolitan markets worldwide, making location a key decarbonization factor shaped by 
climate conditions, energy supply, climate risk, and power-market design. 29 Cooler climates reduce cooling 
demand, which partly explains why leading operators frequently select Nordic countries and northern North 
America. However, low-carbon electricity alone is insufficient. Even regions rich in hydro, wind, or solar can face 
pronounced seasonal variability, including winter wind fluctuations in Nordic systems or hydropower output linked 
to rainfall and snowmelt. As a result, energy storage, backup generation, and grid redundancy remain critical to 
ensuring an uninterrupted power supply.

Climate risk further constrains siting decisions. A 2025 global assessment of nearly 9,000 data centers reports 
widespread exposure to flooding, storms, wildfires, extreme heat, and sea-level rise. 30 Where flood protection, 

fire mitigation, and climate-adaptive design are inadequate, outages, repairs, and asset replacement can offset the 
benefits of cleaner electricity and favorable climate conditions.

Sustainability objectives also interact with regulatory and operational constraints. Multinational operators must 
comply with data-sovereignty regimes such as the General Data Protection Regulation (GDPR), introducing 
trade-offs between minimizing carbon intensity and meeting legal, latency, and business requirements. In some 
cases, low-carbon regions are geographically distant from major user bases, increasing latency or straining network 
capacity, which can be particularly limiting for latency-sensitive AI and cloud workloads.

AI Datacenter as a Strategic Asset

Geographical, Power, and Financing Archetypes

Long-term Scalability &
Economic Feasibility

Land, transmission, and power 
market design enabling long-term 
expansion

Electricity pricing, congestion 
risks, and long-term system costs

Regulatory, Legal &
Community Context

Data sovereignty, privacy 
regulation, and 
cross-border compliance 
constraints
Community acceptance of 
large power, water, and 
land use

Environmental & Disaster 
Risk

Cooling & Climate
Cooler climates reducing 
cooling loads and 
operational energy 
demand

Water availability and 
efficiency of cooling 
system design

Exposure to flooding, 
heat, wildfires, storms, 
and sea-level rise 

Climate resilience, 
adaptation measures, 
and asset protection 
requirements

Network Connectivity &
Proximity to Users / Ecosystem

Low-latency connectivity to major user 
bases and markets
Proximity to cloud hubs, fiber backbones, 
and digital ecosystems

Power Availability & Stability
Sufficient grid capacity for continuous 
hyperscale electricity demand

Seasonal renewable variability 
requiring storage, backup, and grid 
redundancy
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Energy Grid

Source: WeCarbon Analysis 

Figure 1.3a  Hyperscale AI Center Location Factors

Global investment in hyperscale data centers 
by 2030

USD 6.7 trillion

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

2019

Low average grid carbon 
intensity across operating hours
High share of renewables with 
credible additionality and traceability



Hyperscale AI data centers create concentration risk in 
three connected areas: infrastructure resilience, privacy 
and data sovereignty, and reliance on a small number of 
firms for core economic and government functions.

Cloud infrastructure is already concentrated. The five 
largest technology firms control more than half of global 
cloud capacity, and the top three are projected to 
approach two-thirds within the next few years. 33,34 At the 
hardware layer, roughly 90 percent of advanced GPU 
processors come from a single firm, creating strong 
upstream dependence. 35 This produces vertical concen-
tration across chips, cloud platforms, and model layers, 
leaving systemically important AI infrastructure controlled 
by very few firms. 36,37,38

This concentration reduces operational resilience. 
Hyperscale platforms use tightly linked control planes 
and automation, so changes in security policy, traffic 
routing, or resource allocation can spread quickly across 
regions. Local configuration errors or overloads can 
trigger cascading outages that affect multiple sectors 
simultaneously, especially in high-load regions operated 
by dominant providers. 39,40 As AI training and inference 
become more centralized, these failures can act like 
shocks to other critical infrastructure, disrupting 
payments, logistics, energy dispatch, public services, and 
government operations. 36,41,42,43,44

Geographic clustering increases the risk. Studies show 
that existing and planned data centers are concentrated 
in a small number of national and metropolitan hubs, 
many of which are exposed to flooding, storms, wildfires, 
earthquakes, or extreme heat. 45,46 In California, analyses 
indicate that median pollution-burden scores for 
data-center locations fall within the worst statewide 
quintile, with nearly one-third in the highest decile for 
diesel-related exposure. 47 As hyperscale AI facilities 
increase local electricity demand and cooling-water use, 
grid disruptions, water limits, or climate extremes can 
simultaneously impair multiple sites, increasing the risk of 
region-wide digital outages.

Concentration also increases privacy and data-sover-
eignty risk. When governments and companies rely on a 
small set of cross-border cloud providers, conflicts 
among domestic privacy rules, extraterritorial access 
laws, and provider security commitments become harder 
to manage.48 In many countries, access to critical AI 
capabilities depends more on a few firms’ choices about 
compute allocation, model governance, and infrastructure 
security. This can limit inclusive innovation, weaken 
economic sovereignty, and reduce regulatory flexibility, 
especially in developing economies. 36,49  As AI systems 
become embedded in financial, administrative, and 
public-service infrastructure, concentration risk becomes 
systemic risk, supporting calls for oversight frameworks 
similar to those used for other critical third-party 
infrastructure. 39,41,50,51,52

Risk of Infrastructure Concentration

Source: Chindata Group

Their operation & management platform, named Kunpeng, 
enhances these gains by analyzing thousands of real time 
data points and adjusting cooling load, equipment staging, 
and airflow patterns to maximize the use of natural cooling 
and reduce mechanical energy consumption. 

Looking forward, Chindata continues to build a scalable 
and environmentally responsible pathway for high-perfor-
mance computing in the AI era. Documented outcomes 
from their main campuses demonstrate significant 
improvements in energy and water efficiency, including 
cooling energy reductions equal to approximately 
24,000,000 kWh annually and substantial enhancements 
in both PUE and WUE at the cluster level. These metrics 
confirm the effectiveness of integrating AI-driven opera-
tional intelligence with advanced engineering design. 

Chindata Group is a leading carrier neutral hyperscale data center solutions provider and a pioneer in next generation 
AI-ready infrastructure across China. Guided by its mission to “Efficiently Convert Electrical Power Into Computing Power”, 
the company plans, designs, builds and operates hyperscale data center clusters located in strategically important 
computing hubs, including major nodes in the Northern China region under the national “East-to-West Computing” 
initiative. Chindata’s leadership is reflected in global recognitions such as the LEED Building Design and Construction 
(BD+C) Platinum certification for Huailai Headquarters Park Building One D, which is the only data center project in China 
to earn Platinum in the year 2025.

Chindata’s coherent, infrastructure design archetype aims for increasing density, efficiency, and lifecycle performance 
requirements of the AI workloads, including modular construction, simplified power design, hybrid cooling and intelligent 
operations.

CASE STUDY 2 Power-to-Compute at Hyperscale

Nick Wang
President, Chindata

AI has become a powerful engine to reshape the world. 
Our responsibility is not only to support its growth but 
also to ensure that this growth is clean, efficient, and 
sustainable. Chindata integrates AI technologies across 
the full lifecycle of our businesses to continuously 
reduce energy consumption, lower carbon emissions, 
and advance long-term sustainable development.

Modular prefabrication allows the delivery of a 36 MW hyperscale project in approximately 6 months 50%-75% shorter 
than traditional cycles. 

Their “X-Power” system supports a high-reliability, extensive range of workloads from 12kW per rack for edge inference 
applications to 150kW per rack for hyperscale GPU clusters used in AI training. It achieves this through the application of 
800V high voltage direct current architecture, multilevel energy storage and higher voltage grades that increase power 
delivery efficiency and help to alleviate power bottlenecks associated with AI cluster deployment. 

Their “X-Cooling” solutions integrates air cooling, cold plate liquid cooling and immersion liquid cooling into a unified 
system capable of achieving PUE levels between 1.12 and 1.14 during live operation, which is validated across diverse 
environments. The water-free and wastewater recovery features have saved an estimated 250,000 metric tons of 
freshwater and reused as much as 60% of total water in the cooling systems. 
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Empirical measurements show that INT8 or FP8 
inference typically reduces energy use per inference 
by 40 to 70% compared with FP32 in compute-bound 
workloads, depending on the workload and memory 
behavior. Pruning can enable sub-watt neural infer-
ence on embedded platforms. 18,19 Because inference 
typically accounts for most lifecycle emissions of 
deployed AI systems globally, these per-inference 
savings will add up to a total reduction in CO2 reduc-
tions. 19 Combined with edge deployment,  

AI in Climate Mitigation & Adaptation
Artificial intelligence training and climate mitigation share a 
key similarity. Both reach stable, efficient outcomes only with 
sustained, clear signals that guide optimization. In climate 
mitigation, incentives for decarbonization are fragmented. 
Signals are split across many actors, shaped by inconsistent 
policies, exposed to market volatility, and limited by long 
investment payback periods. This leaves most participants 
without a clear goal to optimize, and market forces alone do 
not reduce emissions at a socially optimal pace. Reflecting the 
scale of unrealized opportunity, Kristian Flyvholm, Chair & 
Chief Executive Officer of the Institute of Sovereign Inves-
tors, indicates that long-term investors could capture up to 
USD 9 trillion in value by addressing climate-related invest-
ment gaps.

AI can help by turning scattered signals into actionable 
optimization. By combining real-time data on supply and 
demand, weather and climate, asset health, and user 
consumption, AI can continuously improve operational 
decisions and make mitigation efforts more consistent and 
efficient. Instead of relying on fixed incentives or slow policy 
updates, AI supports adaptive, system-level optimization 
across complex energy and industrial systems.

Empirical studies show in certain settings, AI in renewable 
energy systems, including solar, wind, and hydropower, uses 
predictive maintenance and real-time operational optimiza-
tion to cut unplanned downtime by about 35% and raise 
total energy output by about 8.5%. 53 This shifts management 
from reactive fault response to condition-based interven-
tion, improving reliability and asset use. More broadly, 
AI-enabled forecasting, smart-grid coordination, dynamic 
load scheduling, and data-driven maintenance create an 
integrated optimization framework that adapts to changing 
conditions and supports a more stable, efficient, low-car-
bon energy supply. 54,55

Predictive asset management stands as the most 
significant and immediate application of AI in the 
energy sector. Extra investment in AI will deliver 
significant long-term operational savings.

Nabil Al-Khowaiter
Former Chief Executive Officer, Aramco Ventures

Unplanned downtime reduced through 
AI-powered predictive maintenance and 
operational optimization

~35%

Scenario Analysis 
and Climate Change Adaptation

Eric Chan, Chief Public Mission Officer of Cyberport, indicates that Climate AI is the fastest-growing part of the AI 
investment boom. He adds that climate impact should be built in during incubation, not added after scaling. By 
forecasting weather and climate across areas from neighborhoods to nations and timeframes from minutes to 
decades, AI improves policy design, land-use planning, and disaster risk management.
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Figure 1.4a  AI Methods for Climate-Change Adaptation across Spatiotemporal Scales
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AI climate applications fall into three main areas: monitoring, forecasting, and optimizing. This section covers 
monitoring and forecasting, which provide the evidence base for mitigation and adaptation in energy, agriculture, 
land use, disaster risk management, and environmental governance.

Monitoring and Forecasting
These advances deliver practical benefits. Faster, 
cheaper forecasts reduce reliance on supercomputers 
and help under-resourced national agencies, local 
governments, and institutions in developing regions 
access high-resolution global forecasts. More frequent 
and higher-resolution local forecasts improve water 
management, farm scheduling, infrastructure planning, 
and early warning systems.

These results are often delivered through digital twins 
that let decision-makers test scenarios and policy 
options. Guillermo M. Luz, Chairman of Liveable Cities 
Philippines, notes that a “digital twin” of a city can be 
built to test various scenarios and events during the 
planning stages before construction. Using AI to build 
scenarios may be more cost-effective than building 
physical infrastructure which fails to address 
“real-world” problems.

AI forecasting and simulation expand decision options 
by combining global coverage, fine spatial detail, fast 
inference, and scalable probabilistic outputs. This 
supports climate adaptation and mitigation planning. 
Model complexity should match decision risk and input 
data quality. AI forecasts and long-term projections 
should be used as probabilistic guidance, combined 
with local knowledge and flexible policy tools, and 
applied within multi-model, multi-scale decision 
frameworks. 56,57,58,59,60

New transformer and deep learning weather models are 
improving operational forecasting and supporting 
adaptation planning. Pangu-Weather uses a three-di-
mensional “3DEST” architecture that represents the 
atmosphere across latitude, longitude, and pressure 
levels. It also uses hierarchical temporal aggregation to 
reduce forecast error. Benchmarks show it outper-
formed a leading operational numerical weather 
prediction system on geopotential, humidity, wind, and 
temperature from one hour to one week. FourCastNet 
produces global forecasts at 0.25° resolution. It match-
es numerical models on large-scale fields and often 
outperforms them on high-variance variables such as 
precipitation and surface wind. It also generates a 
week-long global forecast in seconds, making low-cost 
ensemble forecasting practical.

UAE and GCC countries have increasingly used AI in 
planning, scneario building, and comparing socioeconomic 
policy options. 

Dr. Mohamed Bashir Kharrubi
Board Member, Abu Dhabi Investment Group
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Figure 1.4b Monitoring, Forecasting, and Optimizing across Sectors
Source: WeCarbon Analysis
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Dr. Shahid Mahmud, Senior Advisor of OIC-COMSTECH, 
summarizes that AI will be used to rebuild human 
relationships with nature, better understand it, better 
mind it, better guard it, and better reutilize it. In 
monitoring, AI enables continuous tracking of Earth’s vital 
signs across scales that were not previously possible.

According to Ivan Mozharov, Co-founder and Managing 
Partner of Offset8 Capital, advanced analytics can 
support more robust baseline assessment, perma-
nence, and delivery risk modelling, and performance 
tracking across geographies and methodologies. 
Importantly, he has already observed a pricing premium 
emerging for projects in the carbon market that deploy 
these advanced digital MRV tools. Satellite monitoring 
has existed for decades, but limited staff time and 
computing power have meant analysis has often been 
infrequent and local. Recent advances in deep learning, 
particularly transformer-based models, can process 
multispectral and radar data streams continuously. This 
supports near-real-time detection of environmental 
change. Tools like Global Forest Watch’s deforestation 
alerts combine optical and radar signals to detect 
vegetation disturbance and tree-cover loss across 
large areas much faster than manual or rule-based 
methods. 61,62

AI monitoring also improves the detection of major 
emissions. In 2024, the CH4Net model detected 
methane plumes in Sentinel-2 imagery with much 
higher recall than non-AI baselines while keeping similar 
false-positive rates. It can detect emissions around 
200 to 300 kg CH4 per hour, which is relevant for 
point-source leaks in oil and gas infrastructure. As a 
result, it detected about 84% of methane plumes in 
testing, compared with about 24% for a state-of-the-art 
non-AI baseline, with similar false-positive. 63,64 This 
shows data-driven methods can outperform band-ratio 
and purely physical retrieval approaches for large-scale 
methane monitoring. 63,64 China developed “MAZU,” a 
nationwide AI early warning system for disaster 
prevention, and donated it free to countries including 
Djibouti and Mongolia to improve local responses to 
weather-related hazards. During earthquake rescue 
efforts in Myanmar, a multilingual real-time translation 
system based on Chinese large language model 
technology supported international humanitarian aid by 
providing key information. 65,66

While monitoring provides the diagnosis, forecasting 
provides the prognosis. Climate systems are nonlin-
ear and change across timescales from hours to 
decades. AI can learn from large, mixed datasets and 
generate fast probabilistic simulations, improving 
forecast accuracy and detail in key areas.

A major example is Arctic sea-ice prediction. IceNet, 
developed by the British Antarctic Survey with The 
Alan Turing Institute, trained on climate-model 
simulations (1850 to 2100) and satellite observations 
(1979 to 2011) to produce probabilistic sea-ice 
concentration forecasts up to six months ahead. At 
25 km resolution, IceNet outperforms leading 
physics-based seasonal systems for summer Arctic 
sea-ice conditions, especially for extreme events. 67,68,69 
This longer lead time helps indigenous communities, 
shipping operators, policymakers, and adaptation 
planners.

More broadly, AI forecasting supports renewable-en-
ergy output prediction, wildfire and drought risk 
assessment, crop yield forecasting, water-resource 
planning, and urban management. Providing predic-
tions from hours to decades gives decision-makers 
practical guidance for both short-term action and 
long-term adaptation.

AI-driven monitoring and forecasting are becoming 
core parts of climate-resilience infrastructure. They 
shift climate information from periodic reporting to 
continuous awareness and forward-looking risk 
assessment, supporting later optimization and 
intervention. 70,71

Optimization for Efficiency and Resilience

Beyond monitoring and forecasting, optimization 
provides actionable insights. Tomy Lorsch, Founder 
and CEO of ComplexChaos, pointed out that AI’s 
biggest climate impact won’t come from predicting 
the future – it will come from helping humans agree 
on how to shape it. In many cases the gains are 
immediately quantifiable: lower energy consumption, 
higher renewable energy utilization, reduced waste, 
and smaller carbon footprints.

Frank Wouters, Chairman of MENA Hydrogen Alliance, 
noted that AI is increasingly important not only for 
designing optimal configurations of complex systems, 
but more critically for operational optimization. 
AI-driven optimization works best for systems that 
are complex, change over time, have many parame-
ters, and can’t be managed well with heuristics alone. 
These systems are common in modern energy grids, 
urban infrastructure, manufacturing, logistics, and 
resource management. In these settings, small 
inefficiencies accumulate over time and at scale, 
leading to significant waste or emissions. AI control-
lers and optimization algorithms help by continuously 
processing sensor data, forecasting near-term 
behavior, and adjusting controls in real time, handling 
many interacting variables faster and more accurately 
than human operators or rigid rule-based control.

What defines the “optimization” archetype is not the 
specific sector, but these shared features:

In these contexts, AI optimization can deliver fast, 
measurable benefits, often sooner than major structural 
changes like building new infrastructure, policy shifts, or 
behavior change in many domains, such as wind farms, 
data-center cooling, industrial plants, building air 
conditioning, water networks, traffic flow, and waste 
management.

Many interacting variables (weather, supply, demand, 
system loads, environmental conditions) that change in 
real time or near real time

Sufficient data from sensors, historical logs, and 
forecasts to support adaptive algorithms

A control interface, such as actuators, scheduling 
systems, infrastructure controls, or decision protocols, 
that AI can influence

Efficiency and timing gains that compound over time 
or at scale, where small percentage improvements 
produce large total savings

High-impact inefficiency areas such as cooling, heating, 
energy generation, material use, transport, resource 
distribution, and manufacturing, where optimization 
can cut resource use or emissions
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Artificial intelligence does not embody the thinking of an 
individual, but rather humanity’s collective intelligence; 
therefore, the ethical and governance issues arising from 
its application must be approached with great care.

H.E. Jin Liqun
 President and Chair of the Board of Directors, Asian Infrastructure Investment Bank
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Level of automation describes how much initiative and 
independent decision-making an AI system has, from 
passive data monitoring to full control and governance. 
As AI capabilities improve, systems shift from supporting 
decisions to making and executing them independently 
within defined risk and accountability limits. Yang Ming, 
Board Secretary of TusStar, recognizes that AI has a dual 
nature: it requires robust enabling services and 
infrastructure, and it can reshape innovation services by 
redefining productivity and the relationships that 
underpin it.

This classification does not reflect the technical 
“strength” of AI models, but rather the degree of decision 
responsibility and initiative delegated to the system. 
Razann Al Ghussein from the Office of Development 
Affairs, UAE Presidential Court, suggests that climate 
resilience requires a dual approach: utilizing AI while 
maintaining robust traditional emergency-preparedness 
systems. The same underlying model – such as a 
forecasting or optimization model – may function merely 
as an Advisor in a decision-support architecture yet 
become an Orchestrator when embedded within a

closed-loop control system. As AI roles progress from 
Advisor to Governor, the primary challenge shifts away 
from incremental gains in predictive accuracy toward 
governance-critical concerns, including decision explain-
ability, clearly defined risk boundaries with robust 
fail-safe mechanisms, and unambiguous accountability 
and regulatory auditability.

The automation-level framework should be used as a 
decision-allocation tool, not a technology maturity ladder. 
Its purpose is to determine which categories of decisions 
can be delegated to AI systems, under what constraints, 
and with what residual accountability. The shift from 
Observer to Governor reflects an expanding 
decision-making initiative, not stronger models. Conse-
quently, the binding constraint in AI-for-sustainability 
deployment is rarely predictive accuracy, but institutional 
capacity to absorb failure, assign liability, and audit 
decisions ex post. Contributors to this report do not 
recommend treating higher automation as the sole 
objective in AI adoption, as it introduces transition risk 
without guaranteeing proportional sustainability gains.          

Roles by Automation Level

Governor
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Interpreter
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L6

L5

L4

L3

L2

L1

Full control
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Figure 2.1a Roles by Automation Level
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AI Use Case Landscape by Automation Level
Figure 2.2a AI Use Case Landscape by Automation Level
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Sectors covered in this report*

AI Use Case Landscape by Automation Level
Figure 2.2a AI Use Case Landscape by Automation Level

Grid telemetry monitoring; Load & 
generation metering; Ancillary service   
monitoring

Industrial energy logging; Process 
telemetry; Emissions monitoring

Vessel tracking; Fuel consumption 
logging; Emissions monitoring; Engine 
sensor telemetry

Fleet tracking; Fuel & energy logging; 
Cold-chain sensor monitoring

Test data ingestion; LIMS/MES 
integration; Compliance 
document collection

Short-term variable renewable energy 
(VRE) power forecasting; Load 
pattern inference; Asset condition 
diagnosis; Grid state estimation

Asset degradation diagnosis; Yield 
anomaly detection; Information 
Technology (IT) or Operational 
Technology (OT) data fusion

AIS behavior analysis; Emission 
attribution; Machinery anomaly 
detection; Methane slip detection

Driver behavior inference; Route 
delay detection; Vehicle health 
diagnostics; Load efficiency 
analysis

Regulatory rule parsing; Test result 
interpretation; Evidence–rule 
matching

Unit Commitment & Economic 
Dispatch optimization; Reserve 
margin planning; Storage dispatch 
optimization; Curtailment 
minimization

Predictive maintenance recom-
mendation; Process parameter 
optimization; Energy–carbon 
co-optimization via digital twins

Voyage & weather routing 
optimization; Speed & engine 
load optimization; Wind-assisted 
propulsion control advisory; 
Reefer energy optimization

Route & speed profile 
optimization; Vehicle 
utilization optimization; 
Charging & refueling strategy

Certification readiness 
assessment; Test optimization 
recommendation; Document 
automation & verification

Fault Location, Isolation & Service 
Restoration (FLISR); Rate of Change of 
Frequency (RoCoF) event protection; 
Emergency load shedding trigger

Safety shutdown override; Graceful 
degradation & fallback control

Abnormal berthing detection; 
AIS–SAR inconsistency detection; 
Incident rerouting & safety 
interception

Safety risk interception; Incident 
rerouting; Driver intervention triggers

Non-compliance flagging; Dispute 
escalation trigger

Demand Response (DR) aggregation; 
Virtual Power Plant (VPP) orchestra-
tion; Microgrid coordination

Energy–production coupling 
orchestration; Multi-line scheduling 
optimization

Port call coordination 
(bounded); Fleet-wide   
scheduling (operator-internal)

Fleet-level dispatch 
coordination; Urban last-mile   
orchestration; 
Warehouse–fleet scheduling

Test workflow orchestration; 
Cross-system compliance data 
coordination

Centralized autonomous 
grid dispatch

N/A

Autonomous mobility 
powered by autopilot

AI as Testing Inspector / 
Digital Engineer

Weather, soil, and crop condition 
monitoring; Remote sensing data 
collection; Farm input and yield logging

ESG & exposure data aggregation; 
Asset-level climate exposure mapping

City sensor networks; Infrastructure 
monitoring

MRV data collection; Geospatial data 
collection

Waste flow monitoring; Collection 
logging

Climate hazard interpretation; Crop 
stress and yield inference; Pest and 
disease recognition; Loss attribution

Physical climate hazard inference; 
Transition risk signal extraction; 
Greenwashing signal detection

Flood & heat risk mapping; Impact 
attribution

Additionality & permanence 
analysis; Greenwashing detection

Image-based waste classification; 
Contamination detection

Climate risk early warning; 
Precision input recommendation; 
Intervention timing advisory; 
Market and price intelligence

Climate-adjusted PD/LGD 
estimation; Climate risk pricing; 
Portfolio optimization under 
climate scenarios

Emergency resource allocation 
advisory

Credit quality scoring; Price 
advisory

Collection route optimization; 
Treatment advisory

Disaster alert escalation; Crop 
loss verification trigger; Insurance 
and relief eligibility flagging

Credit approval interception; 
Insurance underwriting override; 
Fraud and greenwashing 
enforcement

Disaster response decision 
support

Early warning for carbon 
market frauds

Hazardous waste interception

Community-scale agriculture 
coordination

Climate risk–aware capital allocation

Cross-agency coordination

Automated market coordination

AI-managed city-scale waste control

N/A

AI as Digital Risk / 
Sustainability Officer

N/A

AI as Carbon Market 
Regulator / Trader

N/A

InterpreterObserver GovernorOrchestratorAdvisor Arbiter

Sector

Energy *

Manufacturing & 
Industrial Processes*

Container / Seaside 
Shipping *

Landside Logistics *

Certification *

Agriculture *

Financial Services *

Urban Resilience

Carbon Market & 
Nature Capital 

Waste Management

Wide Adoption          Innovations with Limited Adoption          Pilot / PoC Only

Lights-out manufacturing



Automation as a Responsibility

The automation-level classification does not describe 
how mature an AI technology is; rather, it indicates how 
much decision-making initiative and responsibility are 
delegated to the system. The same underlying model 
may operate at different automation levels depending 
on system architecture, institutional context, and risk 
tolerance. As such, the automation level should not be 
read as a proxy for technical readiness, but rather as a 
lens that highlights where non-technical constraints 
bind most tightly.

The framework shows that progress beyond the 
Observer and Interpreter levels is mainly constrained by 
data access, organizational capability, public accep-
tance, and risk governance, not algorithms. As 
mentioned by Jonathan E. Savoir, Chief Executive Officer 
of Quincus, the biggest barrier in such a context is not 
technical but psychological and practical, as clients 
resist ceding full control to non-rule-based “black box” 
systems. Nan Junyu, Board Director and Vice President 
of CHINT Electric, gave a further example that, in critical 
scenarios such as power grid dispatching and equip-
ment health management, even when AI performs well, 
we still need to take measures on interpretability, 
business model validation, expert knowledge, embed-
ding quantifiable physical models into the algorithm, and 
adopt “Human-in-the-loop” to keep decisions controlla-
ble and trustworthy.

In climate applications, the absence of long-term, 
high-quality environmental data – particularly across 
large parts of the Global South – imposes a hard 
ceiling on automation. Dr. Hosni Ghedira, Senior 
Advisor of ai71, acknowledged that successful AI 
adoption requires a holistic approach that addresses 
data governance, cultural acceptance, local context, 
political cooperation, and long-term capacity building 
alongside the development of the technology itself. 
Without continuous, spatially resolved meteorological, 
hydrological, and ecological datasets, AI systems 
cannot reliably support advisory or control functions, 
regardless of model sophistication. In such contexts, 
the automation ceiling reflects structural data 
constraints rather than technological immaturity.

Conversely, the framework also exposes cases where 
technically mature AI remains trapped at low automa-
tion levels. In agriculture, for example, models for yield 
estimation, pest detection, and precision input 
recommendation are well established, yet adoption 
remains uneven. Here, automation is limited by social 
and economic risks, not by technical capability: trust 
deficits, asymmetric downside risk for smallholders, 
and the absence of mechanisms to absorb losses 
when AI-guided decisions fail. The above framework 
highlights a critical insight for decision-makers: low 
automation does not imply low maturity; it often 
signals unresolved social and distributional 
constraints.

Risk as the Upper Bound of Automation

Strategic Implications for 
Investment and Development Pathways

From a decision-making and capital-allocation perspec-
tive, this classification separates near-term opportunities 
from long-term structural change. Intermediate levels, 
such as Advisor and Arbiter, have already seen aligned 
technology, governance capacity, and economic incen-
tives for deployment and scaling. These are the best fit 
for private capital, corporate investment, and mission-fo-
cused venture funding with moderate risk. In contrast, 
applications nearing the Governor-level automation point 
to institutional change, not product readiness, and require 
regulatory mandates, public coordination, and long 
timelines. These markets must be treated with special 
understanding, reasonable adoption forecasts, and clear 
awareness of governance complexity.

For the Global South, the framework points to a 
different strategy. Many regions may need to skip lower 
automation stages by leveraging open-source models, 
shared climate data infrastructure, and international 
cooperation. Options include treating environmental 
data as a global public good, building open-access 
foundation models tailored to local needs, investing 
through multilateral channels in sensing and monitoring, 
and supporting South-South knowledge transfer. 
Skipping stages does not mean skipping governance. It 
requires building governance capacity alongside the 
technology and placing AI systems in transparent, 
auditable, and cooperative institutions from the start.

The framework further clarifies how policy urgency can 
push technically immature AI into high-stakes decision 
chains. Applications such as carbon-sink quantification 
or natural capital valuation remain epistemically uncer-
tain yet are increasingly embedded in regulatory 
instruments and market mechanisms due to climate 
policy imperatives. In these cases, higher automation 
levels do not necessarily reflect maturity, but rather a 
sense of urgency. The decision implication is not to 
exclude such AI, but to explicitly bound its role – 
treating outputs as provisional, uncertainty-bearing 
inputs rather than decision-authoritative signals and 
preserving strong human judgment at the Arbiter or 
Advisor levels. 

As automation approaches the Governor level, the 
limiting factor is not data or social acceptance, but 
risk governability. Governor-level systems can directly 
actuate decisions affecting critical infrastructure and 
public welfare, such as electricity grids, water alloca-
tion, or urban systems. At this level, the relevant 
question is no longer what AI can do, but whether the 
new risks it introduces are themselves governable – 
whether failure modes are foreseeable, safety enve-
lopes are enforceable, accountability is assignable, and 
intervention is feasible under stress. The automa-
tion-level framework, therefore, functions as a warning 
system: technical feasibility without governable risk 
constitutes systemic fragility, not progress.

Automation Levels Beyond Technology

The best thing about AI is that it can be effectively used in projects. AI works with a precise target, and it has a targeted 
approach. AI allows us to faster analyze and make faster decisions, but the decision has to be made carefully, especially when 
we work with ecology and the climate problems.

Sergey Kanavskiy 
Executive Secretary, Shanghai Cooperation Organization Business Council 
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Dr. Shahid Mahmud, Senior Advisor of OIC-COMSTECH, 
summarizes that AI will be used to rebuild human 
relationships with nature, better understand it, better 
mind it, better guard it, and better reutilize it. In 
monitoring, AI enables continuous tracking of Earth’s vital 
signs across scales that were not previously possible.

According to Ivan Mozharov, Co-founder and Managing 
Partner of Offset8 Capital, advanced analytics can 
support more robust baseline assessment, perma-
nence, and delivery risk modelling, and performance 
tracking across geographies and methodologies. 
Importantly, he has already observed a pricing premium 
emerging for projects in the carbon market that deploy 
these advanced digital MRV tools. Satellite monitoring 
has existed for decades, but limited staff time and 
computing power have meant analysis has often been 
infrequent and local. Recent advances in deep learning, 
particularly transformer-based models, can process 
multispectral and radar data streams continuously. This 
supports near-real-time detection of environmental 
change. Tools like Global Forest Watch’s deforestation 
alerts combine optical and radar signals to detect 
vegetation disturbance and tree-cover loss across 
large areas much faster than manual or rule-based 
methods. 61,62

AI monitoring also improves the detection of major 
emissions. In 2024, the CH4Net model detected 
methane plumes in Sentinel-2 imagery with much 
higher recall than non-AI baselines while keeping similar 
false-positive rates. It can detect emissions around 
200 to 300 kg CH4 per hour, which is relevant for 
point-source leaks in oil and gas infrastructure. As a 
result, it detected about 84% of methane plumes in 
testing, compared with about 24% for a state-of-the-art 
non-AI baseline, with similar false-positive. 63,64 This 
shows data-driven methods can outperform band-ratio 
and purely physical retrieval approaches for large-scale 
methane monitoring. 63,64 China developed “MAZU,” a 
nationwide AI early warning system for disaster 
prevention, and donated it free to countries including 
Djibouti and Mongolia to improve local responses to 
weather-related hazards. During earthquake rescue 
efforts in Myanmar, a multilingual real-time translation 
system based on Chinese large language model 
technology supported international humanitarian aid by 
providing key information. 65,66

While monitoring provides the diagnosis, forecasting 
provides the prognosis. Climate systems are nonlin-
ear and change across timescales from hours to 
decades. AI can learn from large, mixed datasets and 
generate fast probabilistic simulations, improving 
forecast accuracy and detail in key areas.

A major example is Arctic sea-ice prediction. IceNet, 
developed by the British Antarctic Survey with The 
Alan Turing Institute, trained on climate-model 
simulations (1850 to 2100) and satellite observations 
(1979 to 2011) to produce probabilistic sea-ice 
concentration forecasts up to six months ahead. At 
25 km resolution, IceNet outperforms leading 
physics-based seasonal systems for summer Arctic 
sea-ice conditions, especially for extreme events. 67,68,69 
This longer lead time helps indigenous communities, 
shipping operators, policymakers, and adaptation 
planners.

More broadly, AI forecasting supports renewable-en-
ergy output prediction, wildfire and drought risk 
assessment, crop yield forecasting, water-resource 
planning, and urban management. Providing predic-
tions from hours to decades gives decision-makers 
practical guidance for both short-term action and 
long-term adaptation.

AI-driven monitoring and forecasting are becoming 
core parts of climate-resilience infrastructure. They 
shift climate information from periodic reporting to 
continuous awareness and forward-looking risk 
assessment, supporting later optimization and 
intervention. 70,71

FOCUS SECTOR DEEP-DIVE

© Windwoven Grid Cartography of the Gale, Jin Hailiang, Finalist of 2025 Climate and Sustainability Photography Awards

From a national strategic perspective, AI can support 
data-driven decision-making across upstream, mid-
stream, and downstream operations by improving 
resource planning, forecasting demand, optimising infra-
structure utilisation, and reducing operational losses. 

Rt. Hon. Dr. Ekperikpe Ekpo
Honourable Minister of State, Petroleum Resources (Gas), Nigeria
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Managing VRE’s connection to the grid is critical. When 
output is high, generation can exceed the grid’s ability to 
absorb or transmit power. This can force curtailment, 
where operators intentionally reduce output to avoid 
instability. In some regions with high VRE, curtailment can 
waste more than 10% of available renewable generation. To 
keep the system reliable despite VRE variability, grid 
planners set a Planning Reserve Margin (PRM). PRM is a 
probabilistic buffer, often estimated using Loss of Load 
Expectation models, that reflects VRE’s lower capacity 
value. For example, solar power’s effective load-carrying 
capability (ELCC) can drop to 6% during evening peak 
demand, requiring substantial backup capacity. Recent 
studies of power systems moving toward high levels of 
VRE and storage suggest raising PRM targets to approxi-
mately 18%-20% to reflect changing risks and ensure 
sufficient resources are available.74

This structural demand for backup and ancillary services 
has historically been met by dispatchable generation, 
primarily simple-cycle gas turbines (SCGT), which, despite 
their rapid start-up times, operate at exceedingly low-ca-
pacity factors, often below 10%, and function as inefficient, 
high-cost “peaker plants“ as a reliability insurance. Other 
measures are increasingly used but still in limited scope, 
such as long-duration energy storage (LDIR), industrial DR, 
due to higher system complexity and coordination cost. 
Furthermore, the displacement of synchronous generators 
by VREs drastically reduces system inertia, amplifying the 
grid’s vulnerability to high RoCoF events and increasing 
blackout risk, necessitating the deployment of advanced 
grid-forming inverters capable of providing synthetic 
inertia and fast frequency response. The cumulative 
economic burden of these measures, encompassing 
curtailment losses, the capital and operational costs of 
underutilized reserve capacity, and the procurement of 
advanced ancillary services, constitutes the “system 
integration costs,” a significant and growing financial 
challenge for renewable energy deployments. 

The rapid rollout of VRE sources such as solar and 
wind can create significant grid stability challenges, 
especially when VRE exceeds 15% of total generation. 
To keep the system reliable and balanced in real time, 
grid operators need backup capacity, often from 
fossil-fueled peaker plants or hydropower, to provide 
ancillary services such as frequency regulation. This 
backup is often inefficient. Peaker plants, for example, 
may be used less than 10% of the time, running only a 
few hundred hours per year while producing relatively 
high emissions when operating. Dr. Li Zheng, President 
of the Institute of Climate Change and Sustainable 
Development at Tsinghua University, highlights that 
coal power and new energy will not be in a long-term 
either-or replacement relationship in the future, but 
need to work together. After the transition, coal 
power’s role shifts from a primary source to one of 
flexible and reliable support.

Maintaining this rarely used infrastructure is expensive, 
and balancing cost increases in regions with high VRE 
penetration. In the UK, these costs rose by 48% in 2021. 
At 20% wind penetration, operating costs can increase 
by 1 to 4 euros per MWh of wind generation. The issue 
is compounded by limited visibility into consumption 
patterns. This forces utilities to dispatch generation 
reactively rather than use proactive, detailed 
demand-side management, which can improve efficien-
cy and stability. 72,73

Optimization for 
Variable Renewable Energy

Energy & Manufacturing

All sectors in Saudi Arabia, we’re always using artificial intelligence technology – especially environmentally, in water process-
ing, and also in agriculture.

H.R.H. Prince Khalid bin Saud bin Khalid Turki Al Saud
General Advisor, Saudi Arabia General Authority of Meteorology and Environmental Protection

AI-powered predictive dispatch on the supply side can 
reduce wasted wind and solar power and improve 
coordination between distributed resources such as 
solar PV and energy storage and the main power grid. 
On the demand side, AI can identify energy saving 
opportunities in industrial and other settings and speed 
up the shift to lower carbon energy use. Deeper 
integration of AI with energy management systems can 
deliver three benefits for companies: accurately 
identifying energy efficiency bottlenecks, intelligently 
optimizing resource allocation, and reducing energy 
costs and total carbon emissions.

Yin Zheng
Executive Vice President of China and East Asia operations, 
Schneider Electric

Cost increases due to backup capacity in the UK

48%

Suggested PRM targets for high levels of VRE
18%-20%

Figure 3.1a Electric Grids under Different VRE Levels

The displacement of traditional 
synchronous generators by 
inverter-based VRE resources 
precipitates a critical decline in 
overall system inertia – the stored 
kinetic energy in rotating machinery 
that naturally dampens frequency 
deviations

A sudden disturbance, like a 
generator trip, can trigger a more 
rapid and severe drop in grid 
frequency (a high rate of change of 
frequency, or RoCoF), significantly 
elevating the risk of cascading 
failures and widespread blackouts

The diminished resilience to 
frequency excursions creates an 
urgent demand for rapid-response 
services and synthetic inertia, 
driving the deployment of advanced 
technologies such as battery energy 
storage systems, synchronous 
condensers, and grid-forming 
inverters, which can electronically 
mimic the stabilizing inertial 
response of traditional generators to 
ensure grid security

Inherent variability and partial 
predictability begin to exert a 
substantial influence on 
system-wide stability, necessitating 
more frequent dispatch of conven-
tional generators to balance supply 
and demand

Increased operational tempo drives 
a higher demand for ancillary 
services, particularly for frequency 
regulation and the maintenance of 
reserve capacity to buffer against 
sudden changes in VRE output

High concentrations of distributed 
VRE, such as rooftop solar, can 
induce localized voltage fluctuations 
within distribution networks, 
compelling more sophisticated and 
precise voltage control mechanisms 
to maintain power quality

Aggregate impact on the power grid 
is negligible

Stability challenges being localized 
and manageable through minor 
operational adjustments or simple 
modifications to existing assets

Any disturbances, such as minor 
voltage fluctuations at the distribu-
tion level from residential solar 
installations, are generally contained 
and do not propagate to compro-
mise the stability of the wider 
transmission system

Low VRE (<10%) Medium VRE (10% - 30%) High VRE (>30%)
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Any objective should be based on reliable data. Peng 
Peng, Secretary General of China New Energy Investment 
and Finance Alliance, notes that forecasting models 
trained solely on historical data struggle to systematically 
address wind and solar curtailment caused by extreme 
climate events. The expert indicates that this makes data 
that can be used to infer energy use especially valuable, 
such as data related to production, charging, and 
discharging.

Algorithms matter as much as data. Dr. Wang Xin, Director 
of CGN Europe Industrial Innovation Company, predicts 
that as wind and solar capacity grows, power grids will 
require more upgrades to support sustained demand for 
battery energy storage. Grid flexibility and related trading 
require advanced algorithms, making AI well-suited for 
flexibility services and grid dispatch and management. AI 
can reduce the need for labor-intensive human oversight, 
improving efficiency and resilience. Alexander Kormishin, 

Chairperson of the BRICS Youth Energy Agency, has 
observed that AI’s most immediate contribution is to 
automate routine monitoring, dispatch, and anomaly 
detection, freeing up limited staff time and budgets 
for innovation and further digital transformation.

At the same time, real-world deployment remains in 
its early stages. As Prof. Travis Bradford, Founder and 
President of the Prometheus Institute for Sustainable 
Development, explains, AI in today’s energy systems 
primarily serves to “make the curves look smoother” 
by reducing forecast errors, limiting volatility, and 
optimizing day-to-day performance. As a result, the 
current impact is mostly incremental and focused on 
specific tasks rather than full-system autonomy.

The challenge of integrating VRE entails a fundamental divide in power grid operational philosophy, creating a spec-
trum bounded by two polar-opposite paradigms: the pursuit of absolute resilience through prophylactic redundancy 
at one end, and hyper-efficiency through dynamic optimization at the other. The position a grid occupies along this 
spectrum is governed by a complex calculus of regional climate risk, energy portfolio composition, and economic 
constraints.  

The application of artificial intelligence in grid optimization is achieving transformative accuracy across these 
critical domains:  

Figure 3.1c AI Use Cases in Energy & Manufacturing

Figure 3.1b Poles of VRE Optimization Objectives

Dynamic optimization via a cyber-physical 
framework, leveraging high-fidelity AI-driven 
forecasting for predictive dispatch (Unit Commit-
ment/Economic Dispatch) and market-based 
coordination of demand-side resources through 
mechanisms like real-time pricing and VPP 
aggregation; this substitutes temporal balancing 
with spatial smoothing achieved through 
large-scale interconnections (”supergrids”) that 
exploit geographical and meteorological diversity.

Inherent systemic fragility stemming from an 
acute dependency on the fidelity of stochastic 
forecasting models and the integrity of pervasive 
communication networks; the system is thus 
acutely vulnerable to high-impact, low-probabili-
ty (”black swan”) events, where forecast errors or 
network disruptions can trigger catastrophic, 
system-wide cascading failures in a grid stripped 
of traditional physical buffers.

Prophylactic fortification through 
extensive physical redundancy, including 
substantial spinning and non-spinning 
reserves and parallel infrastructure (e.g., 
transmission lines, substations), to ensure 
N-1 security and absorb acute genera-
tion-load imbalances.

Substantial capital and operational expen-
ditures from maintaining underutilized 
redundant assets and spinning reserves, 
coupled with elevated curtailment of 
available VRE as grid stability margins often 
take precedence over maximizing renew-
able energy absorption.

Mitigation 
Strategy

Consequence

Efficiency-PriorityResilience-PriorityObjective

VRE Power Forecasting: 
High-fidelity, short-term 
prediction of solar and 
wind output

Deep Learning: Time-series 
models (e.g., LSTM, Trans-
formers) trained on 
meteorological, satellite, and 
historical generation data

Reduction in Mean 
Absolute/Root Mean Square 
Error (MAE/RMSE) over 
traditional statistical 
methods

Planning & 
Generation

Transmission 
& 
Distribution
 (T&D)

Demand - 
Mobility

Demand - 
Infrastructure

Unit Commitment/Econom-
ic Dispatch (UC/ED): 
Co-optimization of 
generation assets balancing 
fuel cost, emissions, and 
VRE stochasticity

Reinforcement Learning 
(RL) & Heuristic 
Optimization

Reduction in total 
system operating/
adaptation costs

Energy Storage Optimiza-
tion: Optimal charge/
discharge scheduling for 
arbitrage and ancillary 
service provision

Stochastic Optimization 
& RL

Increase in revenue from 
arbitrage and grid services 
compared to simple 
rule-based control

Predictive Asset Mainte-
nance: Proactive identifi-
cation of incipient failures 
in insulators, conductors, 
and substation equipment

Computer Vision & Sensor 
Fusion: YOLO/CNN models 
analyzing drone-captured 
visual, thermal (IR), and 
LiDAR data streams

Reduction in maintenance 
costs and unplanned 
outages

Power Flow & Security 
Analysis: Real-time 
prediction of grid 
congestion and voltage 
violations to prevent 
cascading failures

Graph Neural Networks 
(GNNs) & Physics-In-
formed ML: Models that 
learn grid topology and 
physics to forecast power 
flows under contingencies

Reduction in redispatch 
costs and improved 
lead-time for corrective 
actions

FLISR: Millisecond-level 
fault isolation and 
network reconfiguration 
to minimize outage 
duration

RL & Heuristic Search: 
Algorithms determining 
optimal switching sequenc-
es to restore power to 
non-faulted grid sections

Reduction in customer 
interruption indices

DR & VPP Orchestration: 
Aggregation and control 
of distributed flexible 
loads (e.g., HVAC, 
industrial machinery)

Multi-Agent RL (MARL) & 
Distributed Control: A 
central “brain” coordinat-
ing thousands of IoT-
enabled assets as a single 
dispatchable entity

Peak load reduction; 
provides MW-scale 
capacity for ancillary 
service markets

Energy & Carbon 
Co-optimization: 
Minimization of energy 
cost and carbon footprint 
for facilities (e.g., data 
centers) via digital twins

Reinforcement Learning & 
Digital Twin Simulation: AI 
agents controlling dynamic 
systems (e.g., cooling, 
server loads) within a 
physics-based simulation

Reduces data center PUE; 
substantial reduction in 
energy expenditure

Vehicle-to-Grid (V2G/V1G) 
Aggregation: Orchestration 
of EV fleets as virtual 
batteries for grid services 
and optimized charging

Reinforcement Learning & 
Predictive Analytics: AI 
platform forecasting driving 
behavior and optimizing 
charging/discharging 
against market signals

Reduces EV charging costs; 
enables fleet participation in 
lucrative frequency 
regulation markets

Value Benchmark Role of AITechnologyUse CaseDomain

Orchestrator

Interpreter

Interpreter

Advisor

Advisor

Advisor

Advisor

Orchestrator

Orchestrator

Orchestrator

Advisor

Arbiter

Arbiter
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Beyond algorithmic optimization, the design of electrici-
ty markets is a decisive force in allocating the integra-
tion costs required for grid resilience. In an “energy-only 
market” (EOM), where generators are remunerated 
solely for the energy they produce (MWh), there is no 
financial incentive to maintain costly, infrequently used 
capacity (MW) for future reliability, thereby systemati-
cally discouraging investment in low-frequency, 
high-impact events. While this model was once consid-
ered robust, operating on the free-market principle that 
price spikes during scarcity would naturally fund new 
capacity, the ascendancy of zero-marginal-cost 
renewables has systematically suppressed these critical 
price signals.

This creates an unsustainable paradox: the structural 
need for dispatchable backup capacity rises to offset 
VRE, yet the market revenue to support it evaporates, a 
situation compounded by the advent of large-scale 
storage, which invalidates the market’s foundational 
premise of non-storability. The Electric Reliability 
Council of Texas (ERCOT), America’s largest EOM, 
serves as a cautionary exemplar of this market ineffi-
ciency. Having chronically operated with dangerously 
low reserve margins (often below 13%), its vulnerability 
was catastrophically exposed during the 2021 Winter 
Storm Uri, when a highly coupled failure between 
un-weatherized natural gas infrastructure and power 
generators, a systemic risk unpriced and unmitigated 
by the EOM, precipitated a multi-day, statewide 
blackout.

Integration Cost Market Distribution

In response to these systemic vulnerabilities, a global 
policy pivot away from pure EOMs is underway, with 
many grid operators now implementing Capacity 
Markets or other hybrid structures that explicitly 
remunerate dispatchable resources for their availabili-
ty. In these markets, providers are paid not only for 
generating energy but also for their commitment to be 
available to generate power in the future, creating a 
direct revenue stream for reliability. Beyond the binary 
of energy and capacity, a more granular suite of market 
products has emerged, including Ancillary Services 
such as frequency regulation, voltage control, and 
black-start capability, which are essential for grid 
stability in a low-inertia environment.

Even jurisdictions historically committed to the EOM 
model are now conceding to its limitations. Japan, for 
instance, which liberalized its electricity market starting 
in 2016, initially operated without a long-term mecha-
nism to ensure resource adequacy. Faced with rising 
concerns over generator retirements and thinning 
reserve margins amidst its renewable expansion, the 
country introduced its first nationwide capacity 
market, holding its inaugural auction in 2020 to secure 
capacity four years in advance. This transition reflects 
a broader recognition that market design must 
co-evolve with the physical grid.

This programmatic shift towards market-based 
remuneration for grid services has, in turn, catalyzed a 
burgeoning ecosystem of AI-driven trading solutions 
designed to capitalize on price volatility, a rapidly 
expanding market segment. These systems deploy 
algorithms analogous to those used in high-frequency 
quantitative finance, which ingest vast, heterogeneous 
datasets – ranging from granular meteorological 
forecasts to real-time grid load information – to execute 
automated trading strategies. Crucially, the persistent 
competitive alpha in this domain is rarely derived from 
the proprietary nature of the trading algorithms them-
selves, which are often replicable, but rather from the 
superior acquisition and inferential analysis of high-res-
olution, often exclusive, load and grid constraint data, 
enabling a more nuanced prediction of localized 
supply-demand imbalances than can be achieved by 
competitors.

Looking forward, the evolution of electricity markets is 
poised to accelerate towards even more sophisticated, 
multi-layered designs. Future frameworks will likely 
integrate Flexibility Markets that value the speed and 
ramp-rate of a resource’s response, and highly local-
ized, distribution-level markets for non-wire alterna-
tives. The conceptual frontier is Transactive Energy, a 
peer-to-peer framework where millions of distributed 
energy resources (DERs) – from electric vehicles and 
smart appliances to rooftop solar – can autonomously 
bid their services into a dynamic, integrated market-
place, thereby orchestrating a resilient and efficient grid 
from the bottom up.

Figure 3.1d Global Electricity Market: EOM vs. Capacity

JEPX + OCCTO
(Japan, Hybrid)

NZEM
(New Zealand, EOM)

NEM
(Australia, EOM)

NEMS
(Singapore, EOM)

EPEX SPOT + CM
(France, Hybrid)

N2EX/EPEX +CM
(UK, Hybrid)

PJM/ISO-NE/NYISO
+ RPM/FCM/ICAP

(USA, Hybrid)

AESO
(Canada, EOM)

ERCOT
(USA, EOM)

Energy-Only Market (EOM)

Hybrid Market (Energy Market + Capacity Mechanism)
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Next-generation Electricity Grid Building 

Nick Mabey, Chief Executive Officer of E3G, indicates that a key open question is whether AI will make the energy 
system more centralized or more decentralized. The design of a future AI-powered grid is not determined by 
technology alone. Instead, it depends on each country’s context and a trade-off between two governance approach-
es: state-led, centralized models that use strong decarbonization mandates to speed up deployment but reduce 
operational flexibility, and decentralized, market-driven models that support innovation but can lead to underinvest-
ment in long-term reliability unless capacity mechanisms are carefully designed. Muhammad Mustafa Amjad, 
Program Director of Renewable First, believes that future systems may price infrastructure rather than the energy 
commodity itself, and that AI and machine learning are essential for aligning supply and demand.

Centralized power systems use  
top-down planning and dispatch 
by a national or regional operator. 
With AI, this can become a 
centralized “super-brain” where 
one authority aggregates real time 
data across generation, storage, 
grids, and loads, then optimizes 
system operation.

Peng Peng, Secretary General of 
China New Energy Investment and 
Finance Alliance, highlights that 
China’s power system has 
extremely high safety requirements 
and is currently adopting a steady 
strategy of taking small but fast 
steps. In the short term, it will still 
mainly rely on centralized human 
supervision to ensure stable and 
reliable grid operation.

This model improves coordination 
but amplifies a data Matthew 
effect. Incumbent operators hold 
decades of proprietary operating 
data, enabling more accurate AI 
forecasting and dispatch. The 
advantage compounds, raising 
barriers for smaller firms and 
distributed energy players.

Market-driven power systems are 
organized around multiple Indepen-
dent System Operators (ISOs) or 
Regional Transmission Organiza-
tions (RTOs), which coordinate 
generation and demand through 
competitive market mechanisms 
rather than centralized command. 
In an AI-enabled evolution of this 
model, the grid increasingly 
resembles a network of semi-au-
tonomous microgrids – such as 
communities, campuses, or 
industrial parks – each capable of 
local balancing.

Within each microgrid, AI optimizes 
generation, storage, and demand in 
near real time. Coordination with 
neighboring microgrids occurs 
through price signals and 
market-based energy exchanges 
rather than centralized directives. 
This distributed intelligence 
architecture reduces reliance on a 
single control center, lowers 
systemic concentration risk, and 
enables smaller actors to partici-
pate on more equal footing. 
However, it also places greater 
demands on interoperability 
standards, real-time market design, 
and localized forecasting accuracy 
to maintain system stability.

Hybrid or transitional systems 
occupy an intermediate state 
between centralized command and 
fully market-driven operation. 
These systems often retain strong 
central planning functions while 
gradually introducing market 
mechanisms, distributed genera-
tion, and localized control.

In practice, AI deployment in such 
systems is uneven: centralized 
optimization may coexist with 
emerging microgrids and regional 
markets. This creates both oppor-
tunities and risks. On one hand, AI 
can accelerate grid modernization 
by improving forecasting, reducing 
losses, and integrating variable 
renewables. On the other, 
fragmented governance and 
uneven data access can exacer-
bate coordination challenges and 
slow institutional adaptation. The 
long-term trajectory of these 
systems depends on how effec-
tively regulatory frameworks, 
data-sharing mechanisms, and 
market rules evolve alongside AI 
capabilities.

Figure 3.1e Electricity Grid Archetypes

Market-driven Hybrid / TransitionalCentralized
China, France USA, Germany, Australia India, Nigeria

In regions of the Global South with profound grid infrastructure deficits, decentralized microgrids have become the 
most expedient and economically viable solution to alleviate energy poverty, effectively leapfrogging centralized grid 
expansion. One significant example is the “Pay-As-You-Go” (PAYG) model, an innovative asset-financing mechanism 
that promotes access to clean energy by amortizing the initial capital expenditure of a Solar Home System (SHS) 
into micro-payments. 

The edge layer embeds intelligence near the physical assets, executing time-critical functions that are computation-
ally or geographically infeasible for the central cloud. Its primary roles include:

The limits of purely centralized or decentralized grid 
architectures show the need to move toward a hybrid, 
hierarchical model. The future power grid should 
combine centralized cloud intelligence with distributed 
edge computing in a cloud-to-edge system. This 
approach builds resilient, shared intelligence where 
each layer handles specific tasks. Sonia Dunlop, Chief 
Executive Officer of the Global Solar Council, highlights 
that AI can enable aggregation of small assets into 
VPPs, allowing decentralized producers to access 
markets, which is central to scaling solar and battery 
integration, improving grid efficiency and reliability.

The cloud layer acts as the system’s “central brain.” In 
its governor role, it handles large-scale, compute-heavy 
optimisation tasks such as transcontinental energy 
trading, stochastic reserve planning, and system-wide 
weather forecasting. Dr. Lü Xuedu, former Deputy 
Director-General of China’s National Climate Center, 
notes that AI can accurately predict power supply and 
enable grid peak shaving and demand-side regulation, 
thereby improving the efficiency of renewable energy 
utilization.

Figure 3.1f Pay-As-You-Go Financing Process in Africa

Executing latency-critical tasks, such as the fast frequency response of grid-forming inverters and protective 
relaying, operating on timescales inaccessible to the cloud.

Crucially, the edge provides profound fault tolerance by maintaining autonomous local control during communica-
tion disruptions with the central cloud, thereby embedding resilience directly at the grid’s periphery.

Sub-second Control 

Performing high-frequency, localized load and generation forecasting to enable autonomous control of discrete 
systems.

Localized Prediction & Autonomy 

Resilience Through Disconnected Operation 

The consumer pays a 
nominal initial deposit 
(e.g., $25-30) to receive 
an SHS unit, which 
typically includes a solar 
panel, battery, LED 
lighting, and a mobile 
phone charging port.

The user then makes 
regular micro-payments, 
often priced at parity with 
their previous daily 
expenditure on kerosene, 
via M-Pesa or other 
mobile money to 
purchase ongoing access 
to electricity.

Installation Micro-Payments

Each SHS is embedded with an IoT module that commu-
nicates with the provider’s central cloud platform. 

Upon receipt of payment, the system is remotely 
activated; in the event of non-payment, the system is 
remotely deactivated. 

This digital collateralization effectively mitigates default 
risk in unbanked populations that lack formal credit 
histories, making the extension of asset financing scalable 
and commercially sustainable.

Risk Control 

Orchestrator

Advisor

Arbiter

Orchestrator
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IT/OT Fusion：Pavestone for AI in Manufacturing
The foundation of manufacturing intelligence is breaking 
down the long-standing barrier between Information 
Technology (IT) and Operational Technology (OT). IT 
manages business systems like ERP, cloud platforms, and 
business logic. OT runs physical operations using PLCs, 
SCADA, and field devices. This split is built into industrial 
design and reflects a focus on predictable performance, 
stability, and physical separation. AI pushes IT and OT to 
merge. To deliver useful insights, AI must combine enterprise 
data with real-time sensor data and turn predictions into 
physical actions. This shift changes what industrial systems 
can do and introduces new risks.

A typical integrated IT and OT data architecture works like 
this. On the shop floor, PLCs, sensors, and actuators 
continuously collect high-frequency operational data 
through Industrial Internet of Things infrastructure. At the 
network and edge layers, edge gateways preprocess data 
and run real-time analytics near the source to enable 
millisecond responsiveness and reduce latency and 
bandwidth consumption. At the platform and application 
layers in IT and the cloud, protocols such as OPC UA support 
semantic interoperability across devices, while messaging 
protocols such as MQTT enable scalable data transmission to 
the cloud. In the cloud, AI models analyze data across the 
system to support predictive maintenance, production 
optimization, and supply chain orchestration. According to 
Johnson Chng, Asia Chairman of VenCap, AI can reduce 
energy consumption by 12% in industrial settings without 
adding new hardware; adding IoT sensors can increase 
savings to 20%.

Dr. Tyne Lin, CPO of Annto Logistics under Midea Group, 
highlights that linking operations directly to the sales and 
marketing system, called “production-sales integration”, can 
cut unnecessary storage and transfers. The main barrier to 
adopting AI in manufacturing is organizational, not technical. 
Manufacturing is cautious because of how OT systems are 
built. Linking modern AI platforms from IT to legacy industrial 
control systems reveals interoperability gaps and introduces 
new risks. Combining IT and OT removes the separation that 
has long protected industrial operations. Evidence shows 
how serious this is, as up to 74% of incidents affecting 
critical infrastructure come from breaches in enterprise IT 
systems. Recent repeated incidents show this clearly. 
Attackers did not access OT networks directly, but disrupt-
ing IT systems alone was enough to stop physical opera-
tions. In AI-enabled manufacturing, this imbalance becomes 
even more important.

AI further expands the attack surface through its intrinsic 
opacity. Many industrial AI systems, particularly those based 
on deep learning, operate as “black boxes,” with decision 
logic that is difficult to interpret or formally verify. This 
opacity enables novel attack vectors. In adversarial attacks, 
imperceptible perturbations to input data – such as sensor 
readings or images from visual inspection – can induce 
catastrophic misclassification, allowing defective products to 
pass quality control. In data poisoning attacks, malicious 
samples injected during training embed latent backdoors, 
enabling attacker-defined behavior when specific triggers 

arise in production. Between 2024 and 2025, reported 
incidents involving model theft, poisoning, and manipulation 
increased by approximately 180%, underscoring the rapid 
escalation of AI-specific threats.

Beyond malicious interference, industrial AI introduces a 
subtler but equally profound challenge: dynamic safety. Unlike 
conventional control logic, AI systems – particularly those 
employing adaptive optimization or online learning – do not 
remain behaviorally static. Their decision boundaries evolve 
over time, creating the risk of drift. Data drift arises when 
changes in raw materials, equipment conditions, or environ-
mental factors alter the statistical properties of inputs 
relative to training data, degrading model reliability. Concept 
drift is more insidious: the underlying relationship between 
inputs and outcomes itself changes, as in chemical processes 
where catalyst degradation alters reaction behavior. 
Unchecked, such drift can push systems toward inefficient or 
unsafe operating regimes without any external attack.

These risks are compounded by the objective functions 
typically assigned to AI systems. Models optimized for 
short-term throughput or energy efficiency may sacrifice 
long-term asset integrity, accelerate equipment fatigue, or 
erode safety margins. Such behavior is locally rational but 
globally unsafe, revealing a misalignment between algorithmic 
optimization and system-level resilience.

The challenge is compounded by the incompatibility 
between traditional DevOps practices and manufacturing 
realities. Testing AI models on live, high-value production 
lines is often infeasible. The solution lies in high-fidelity 
simulation platforms and digital twins, which serve as 
essential sandboxes for training, validating, and stress-test-
ing AI models under a wide range of scenarios. These virtual 
environments enable systematic exploration of failure modes 
without risking physical assets or production continuity.

A successful transition, therefore, begins not with deploy-
ment, but with governance. Effective AI integration in 
manufacturing requires an integrated risk-management 
function spanning IT, OT, data science, legal, and compliance 
domains, guided by proactive frameworks. The first mandate 
of such a team is to classify system functions by criticality, 
rigorously distinguishing essential production pathways from 
auxiliary or non-critical features. This prioritization underpins 
architectures designed for graceful degradation under stress, 
ensuring that AI-enabled manufacturing systems fail safely 
rather than catastrophically.

Source: CHINT

As a global provider of intelligent energy system solutions, CHINT Group draws on more than four decades of manufacturing 
experience to embed digitalization, intelligence, and decarbonization across the entire production lifecycle. Through the 
integration of industrial internet platforms, big-data infrastructure, and AI technologies, CHINT has developed replicable 
zero-carbon factory and industrial-park models that improve total factor productivity while supporting high-quality 
industrial upgrading.

CHINT has deployed adaptive AI vision inspection across low-voltage electrical equipment, smart meters, and photovoltaic 
module lines. The systems continuously learn defect patterns from production data, achieving >98% detection accuracy and 
100% online inspection at critical steps. Manual inspection labor was reduced by ~75%, effective capacity increased by 
115.4%, and outgoing quality variability was significantly reduced, establishing an industrial-scale zero-defect control baseline.

In its electrical equipment future factory, AI-coordinated robotic welding, assembly, and material handling enable high-mix, 
low-volume manufacturing. On the miniature circuit breaker line, fully automated production reaches a cycle time of 1.2 
seconds per unit. Compared with conventional workshops, operating costs fell by 43%, production efficiency increased by 
335%, and product development cycles shortened by 22%.

CASE STUDY 3 AI-Enabled Sustainable Manufacturing

We recognize that AI itself is an energy-intensive 
technology, and that making AI green is a prereq-
uisite for achieving sustainable development.

Nan Junyu
Board Director and Vice President, CHINT Electric

AI-based In-line Quality Control

AI-driven Flexible Production Systems

At the CHINT metering industrial park, a digital twin integrating generation, grid, load, and storage uses real-time data from 
1,681 sensors and dual-mode HPLC-Bluetooth communication. The system dynamically allocates production to lower-ener-
gy-intensity lines (>70% of output), optimizes photovoltaic generation, storage dispatch, and off-peak electricity use, 
delivering 8,500 kWh in electricity savings and an 8.47 tCO2 reduction.

By positioning AI as a foundational production capability rather 
than a peripheral tool, CHINT has established an integrated 
“AI-enabled manufacturing” model that simultaneously 
advances efficiency, flexibility, and decarbonization. Driven by 
both digital transformation and dual-carbon objectives, the 
company continues to demonstrate how AI can underpin 
scalable, zero-carbon manufacturing pathways for the broader 
industrial sector.

Digital-twin Optimization of Energy and Production Coupling

Through a proprietary cloud platform under a “one cloud, two networks” architecture, shop-floor equipment is connected to 
enterprise systems for real-time data ingestion and analysis. Production schedules are dynamically adjusted based on order 
inflow, enabling coordinated multi-line operation and direct integration with CRM and energy management systems, 
shortening delivery cycles and improving order fulfillment reliability.

End-to-end Industrial Internet Integration

Increase in AI-specific cybersecurity threats in 
industrial scenario between 2024 and 2025

180%
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Safe and Responsible 
AI Transitions in Industries Global Governance on Seaside Decarbonization

Shipping & Logistics

Cost added by compliance with ECA standard in 
the Mediterranean

USD 1.31 / ton

While AI-driven optimization promises substantial gains in 
efficiency and sustainability across manufacturing – from 
energy management and digital twins to predictive control 
and operational orchestration – the central challenge lies not 
in the envisioned end state, but in the transition itself. It is 
during this pathway that tightly coupled technological 
opportunities and systemic risks co-emerge. Manufacturing 
systems, characterized by extreme dependence on 
production continuity and high capital intensity, exhibit 
greater structural conservatism toward AI adoption than the 
energy sector. In this context, legacy reactive governance 
and risk-control mechanisms are no longer adequate to 
manage the non-linear risks introduced by AI, including 
cascading downtime, latent quality deviations, and ambigu-
ous returns on investment. Leadership is therefore 
compelled to confront a deeper question – not whether to 
upgrade, but whether it is safe to do so. Enabling a secure, 
resilient, and sustainable AI transition in manufacturing 
demands a fundamental reconfiguration of governance 
frameworks, system architectures, and operational safety 
models, shifting risk management from ex post mitigation to 
ex ante design.

An underestimated barrier to industrial AI adoption lies in 
the incomplete interoperability between modern IT stacks 
and legacy industrial control protocols, including IEC 61850, 
OPC UA, and proprietary fieldbus systems. This gap makes 
safety and reliability not an auxiliary concern but a founda-
tional design constraint, governed by a non-negotiable 
principle: keep things running and never break them.

At the core of industrial AI safety lies the doctrine of graceful 
degradation. Rather than preventing outright failure, systems 
must be engineered to fail safely. When AI components 
malfunction, drift beyond acceptable bounds, or lose 
network connectivity, control must automatically and 
seamlessly revert to deterministic logic executed locally by 
programmable logic controllers (PLCs) or distributed control 
systems (DCSs), thereby preserving both production 
continuity and physical safety.

Operationalizing graceful degradation requires a deliberate 
separation between intelligence and control.  AI must 
function as an advisor, not a sovereign decision-maker. This 
is achieved through a layered control architecture. At Level 1, 
PLCs and DCSs enforce hard-coded, deterministic safety 
and control logic. Level 2, comprising SCADA and 
human–machine interfaces, provides system visibility and 
operator interaction. Level 3 hosts AI-based decision and 
optimization engines, which generate recommendations and 
optimized setpoints without direct authority over actuation. 
In this “AI-as-supervisor” model, AI proposes, but determin-
istic control executes.

System integrity is maintained through continuous heartbeat 
and health-monitoring mechanisms, whereby PLCs or DCSs 
verify the availability, latency, and validity of AI outputs. Any 
anomaly – whether network interruption, stale inference, or 
statistically aberrant recommendations – triggers an 
immediate fallback. Crucially, this reversion must  be 
bumpless: control transitions smoothly from AI-assisted 
operation to predefined safe control states using the last 
validated setpoint, avoiding abrupt disturbances that could 
damage equipment or destabilize processes.

To address the combined risks of model opacity and 
behavioral drift, decent degradation must be reinforced by 
two further design principles. First, a Human-on-the-Loop 
(HOL) operating model is essential for safety-critical 
manufacturing. Operators continuously supervise AI 
recommendations, retain immediate veto authority, and 
intervene whenever outputs conflict with operational 
judgment. Human decisions are not merely overrides; they 
form a feedback loop that informs subsequent model 
refinement. This represents a deliberate shift away from 
Human-in-Command paradigms, recognizing that account-
ability, rather than autonomy, is the governing requirement in 
industrial environments.

Second, AI systems must be constrained by immutable 
safety envelopes embedded directly within PLC or DCS 
logic. These hard limits – on temperature, pressure, speed, or 
chemical composition – are non-negotiable and inaccessible 
to AI modification. Regardless of model behavior or optimi-
zation objectives, any command that violates these 
boundaries is rejected at the control layer, providing a final, 
deterministic line of defense against both adversarial 
manipulation and endogenous drift.

This architectural pathway is critical for three reasons. It 
establishes operator trust by guaranteeing that, in the worst 
case, AI failure returns the system to familiar, validated 
control modes. It safeguards production continuity by 
preventing AI-induced faults from cascading into full-line 
shutdowns. Last but not least, it creates a protected 
operational environment where AI systems can be updated, 
retrained, or replaced without interrupting live production. In 
industrial manufacturing, resilience is not achieved by 
eliminating failure, but by engineering systems that absorb it 
without catastrophe.

The shipping and logistics industry is facing two pressures related to decarbonization. A significant driver is regulatory 
mandates, including the International Maritime Organization‘s (IMO) ambition to achieve net-zero greenhouse gas (GHG) 
emissions by 2050, which aligns with various nationally determined contributions (NDCs). Concurrently, market-based 
pressure is intensifying as cargo owners and supply chain principals demand more stringent emission reductions from their 
logistics partners. As international emissions standards converge and demand for granular, real-time emissions manage-
ment grows, the adoption of Artificial Intelligence (AI) has become an essential instrument for operational control and 
strategic compliance.

On the seaside, the IMO has committed to achieving net-zero GHG emissions from international shipping by or around 
2050. Key interim goals, compared to 2008 levels, include reducing the carbon intensity of international shipping by at 
least 40% by 2030 and total annual GHG emissions by at least 70%, with a target of 80% by 2040. To enforce this trajec-
tory, the IMO has instituted a multi-faceted regulatory regime within the MARPOL convention:

These regulations introduce significant operational 
and financial complexities. For instance, compliance 
with ECA standards is projected to add an estimated 
$1.31 per tonne of cargo in the Mediterranean, a cost 
increasingly passed to customers. As vessel operating 
costs depend on multiple dynamic variables – 
including fuel price, carbon pricing, weather, and 
ocean currents – traditional human-led optimization 
of voyage planning and vessel performance becomes 
exceedingly difficult. 

Artificial Intelligence is emerging as a transformative 
technology to navigate this complex landscape, 
unlocking substantial efficiencies and emissions 
reductions across multiple domains.

Figure 3.2a Key Regulations on Seaside Decarbonization

Established under MARPOL Annex VI, these designated zones enforce stricter 
controls on sulphur oxides (SOx) and nitrogen oxides (NOx), compelling operators to 
either use more expensive low-sulphur fuels or invest in exhaust gas cleaning 
systems (scrubbers), which carry high capital costs and face operational restrictions.

An economic element to be implemented alongside the GFS, likely taking the form of 
a GHG levy, a feebate system, or a cap-and-trade scheme to incentivize accelerat-
ed emissions reduction.  

A forthcoming technical measure that will mandate a phased reduction of marine 
fuel’s GHG intensity, assessed on a well-to-wake lifecycle basis.  

A one-time technical certification requiring existing ships to meet a specific energy 
efficiency design standard. 

An operational measure that rates ships annually from ‘A’ (best) to ‘E’ (worst) based 
on their carbon intensity. A ship rated ‘D’ for three consecutive years or ‘E’ for one 
year must implement a formal corrective action plan. 

Energy Efficiency 
Existing Ship Index (EEXI)

Carbon Intensity 
Indicator (CII)

GHG Fuel Standard 
(GFS)

Maritime GHG Emissions 
Pricing Mechanism

Emission Control 
Areas (ECAs)

DescriptionRegulation
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Road freight and last-mile distribution fleets are among 
most structurally entrenched and analytically intracta-
ble sources of Scope 3 emissions in global supply 
chains. For large manufacturers, retailers, and energy 
companies, logistics activities routinely account for 
30–60% of total Scope 3 emissions, with road trans-
port dominating due to its high energy intensity, 
fragmented asset ownership, and limited real-time 
observability. As a result, last-mile operations have long 
been a blind spot in carbon accounting, limiting both 
emissions attribution accuracy and mitigation effec-
tiveness. Jeffrey Wang, GCA Supplier Operations 
Manager of Maersk, further notes that compared to 
traditional diesel trucks, electric trucks have very 
different operational characteristics. If we try to 
manage electric trucks using the same mindset and 
methods as diesel trucks, we will run into many prob-
lems. What’s needed for a fleet company or even a 
driver is an open mindset and a willingness to change 
existing operational behaviors.

Smart AI fleet management fixes this structural deficit 
with a data-driven control system for logistics. Zhang 
Junyi, CFO of Sense Auto, recognizes that AI can boost 
vehicle energy efficiency through smart route planning, 
optimize EV charging time and location, support 
renewable energy use, and help the grid manage peak 
demand, making the auto industry smarter and more 
sustainable.

By integrating satellite positioning, vehicle telematics, 
IoT sensing, artificial intelligence, and cloud-scale 
analytics, these platforms enable continuous monitor-
ing, optimization, and governance of vehicles, drivers, 
and logistics workflows. No longer confined to isolated 
efficiency tools, mature fleet systems increasingly 
operate as embedded control nodes within urban 
mobility infrastructures and low-carbon logistics 
ecosystems. At full maturity, such platforms are 
organized into four tightly coupled layers: data acquisi-
tion, real-time analytics, decision intelligence, and 
enterprise-level integration.

Economic pressure remains the dominant catalyst for 
fleet digitalization. According to Abdelrhman Hatem, 
Founder of Electrify, AI is not just a layer of optimiza-
tion, but the backbone of how we scale sustainable 
mobility – turning raw data into operational intelligence 
that works in real, resource-constrained markets. In 
logistics operations, last-mile delivery alone can absorb 
more than 50% of total delivery costs, driven by fuel 
price volatility, labor intensity, vehicle downtime, and 
coordination inefficiencies. AI-enabled fleet manage-
ment mitigates these pressures through three interde-
pendent operational mechanisms.

AI-driven Fleet Management
Figure 3.2b Seaside Decarbonization Use Cases

This synthesis of regulatory pressure and technological capability underscores a paradigm shift in the maritime 
industry. Achieving the ambitious 2050 net-zero target depends not only on new fuels and hardware but also on 
the intelligent, data-driven optimization of every aspect of fleet operations – a domain where AI is proving indis-
pensable.

AI platforms can synthesize real-time data on weather, ocean currents, sea 
ice, and vessel-specific performance to dynamically optimize route 
planning. This continuous adjustment surpasses human capabilities and can 
yield fuel savings of up to 20%. Further, by analyzing sensor data from 
onboard machinery, AI-driven predictive maintenance algorithms can 
preempt equipment failures, ensuring engines and auxiliary systems run at 
peak efficiency and preventing excess fuel consumption and emissions.

AI is critical for maximizing the potential of hardware like Flettner rotor sails 
and wing sails. AI algorithms perform real-time control, adjusting rotor 
rotation speed or sail angle to generate maximum thrust from prevailing 
wind conditions, directly reducing engine load and fuel burn. Trials have 
demonstrated verified fuel and CO2 savings of 8.2% from rotor sails alone, 
with combined savings from AI-driven voyage optimization reaching up to 
28% on transatlantic routes.

By fusing multi-source sensor data – including internal and ambient 
temperature and humidity, container stacking density, and door-opening 
frequency – AI dynamically optimizes set-point temperatures and defrost 
strategies, safeguarding cargo integrity while reducing energy consump-
tion and enabling early detection of equipment anomalies to prevent 
cold-chain failure.

Timely removal of hull fouling effectively reduces the navigation resistance 
of ships. According to Alexander Peng, Vice President, Shanghai Humanoid 
Robot Innovation Incubator, this can also lower fuel consumption, and 
indirectly contributes to energy conservation and emission reduction in 
the shipping industry.

Advanced sensors, including Fourier-Transform Infrared Spectroscopy 
(FTIR), Non-Dispersive Infrared (NDIR) sensors, and quantum cascade 
lasers, feed real-time exhaust gas composition data into AI models. 
These models provide immediate emission insights, predict periods of 
high methane slip based on operational parameters, and can actively 
manage methane abatement catalysts, which can convert over 95% of 
slipped methane into less harmful CO2 .

Data shows methane slip varies significantly with engine load, decreasing 
from 6.8 g/kWh at 10% load to 2.2 g/kWh at full load. AI can recommend 
optimal engine RPMs and load profiles for different conditions to minimize 
emissions, demonstrating the granular control necessary for effective 
decarbonization.

Automation LevelDescriptionUse Case

Voyage and 
Vessel 
Optimization

Wind-Assisted 
Propulsion

Refrigerated 
Container 
Efficiency

Robotic 
Removal of 
Hull Fouling

Real-Time 
Methane 
Monitoring

Engine Load 
Optimization 
against Methane 
Leakage

Route and Speed Profile Optimization

By learning from historical and real-time traffic conditions, road topology, vehicle mass, and delivery constraints, AI 

systems optimize not only the shortest distance but energy-minimizing trajectories and speed profiles, reducing 

stop-and-go losses, idling time, and peak-load fuel burn.

Driving Behavior Correction

High-frequency telemetry – engine load, throttle position, acceleration patterns, and braking intensity – enables 

attribution of excess fuel use to specific driving behaviors. Feedback loops and adaptive training programs 

translate these insights into sustained efficiency gains at the driver level.

Vehicle Utilization and Load Efficiency

Dynamic dispatching and demand-aware scheduling minimize empty mileage and suboptimal loading. By increasing 

payload efficiency and trip consolidation rates, equivalent logistics demand can be served with fewer vehicle-kilo-

meters travelled, lowering both fuel intensity and emissions per unit of service.

Governor

Orchestrator

Governor

Advisor

Advisor

Advisor

Advisor

Advisor

Advisor

Arbiter

Orchestrator
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Beyond efficiency, smart fleet management resolves a 
critical Scope 3 data deficit. For most corporations, 
emissions from third-party logistics providers are still 
estimated using generic emission factors because 
primary activity data are unavailable. Mandating 
standardized telematics deployment and trajectory 
data sharing from contracted carriers transforms this 
opaque segment into a directly measurable system. 
High-resolution activity data enable activity-based 
carbon accounting using harmonized methodologies, 
allowing logistics emissions to be natively integrated 
into enterprise carbon-management platforms. Data 
traceability further strengthens emissions verification, 
ESG disclosure credibility, and regulatory preparedness.

Advanced AI methods further enhance system-level 
optimization under real-world uncertainty. Traditional 
routing algorithms optimize the shortest distance or 
the lowest cost under static assumptions. Real logistics 
environments, however, are shaped by traffic dynamics, 
weather disruptions, and stochastic demand. Deep 
reinforcement learning (DRL) reframes routing as a 
Markov decision process, enabling agents to learn 
policies through interaction with dynamic environments 
and to optimize cumulative system-level rewards 
rather than local optima. Compared with classical 
approaches such as A* or genetic optimization, DRL 
explicitly models uncertainty, encodes multi-objective 
trade-offs – including time, cost, fuel use, and emis-
sions – and generalizes across unseen scenarios. While 
training is computationally intensive, inference is 
near-instantaneous, enabling minute-level responsive-
ness at the urban scale. Jonathan E. Savoir, Chief 
Executive Officer of Quincus, observes that after 
extensive training, these agents can infer the optimal 
route for a new shipment in seconds, integrating real-time 
data such as weather, port congestion, and delays.

Human behavior remains the dominant risk vector in 
fleet operations, accounting for over 90% of serious 
road accidents. AI-based driver-monitoring architec-
tures mitigate this risk through layered sensing and 
inference. Inertial sensors detect aggressive manoeu-
vres, driver-monitoring systems analyze facial dynam-
ics and posture to identify fatigue and distraction, and 
advanced driver-assistance systems monitor lane 
deviation and headway to issue real-time warnings. 
Together, these systems reduce accident frequency, 
insurance losses, and liability exposure, contributing 
directly to social sustainability outcomes.

Deeper mechanical observability further extends AI 
control into the vehicle itself. Telematics platforms 
integrated with vehicle CAN buses and standards 
such as J1939 unlock continuous monitoring of 
engine speed, coolant temperature, oil pressure, 
transmission load, brake wear, battery voltage, and 
state of health. AI models detect subtle anomaly 
drift well before failure thresholds are reached. 
Simultaneously, high-frequency fuel metrics enable 
precise attribution of inefficiency to specific driving 
behaviors, providing a quantitative basis for targeted 
intervention and training.

By integrating operational optimization, behavioral 
governance, and high-fidelity emissions measure-
ment, smart AI fleet management transforms 
logistics from a passive Scope 3 liability into an 
actively governable lever for decarbonization. Its 
strategic significance lies not only in cost reduction, 
but in enabling scalable, auditable, and system-level 
emissions mitigation across one of the most struc-
turally resistant segments of the global economy.

Source: Maersk

Maersk is a purpose-driven company. As global supply chains grow more complex, customers need integrated logistics. 
Maersk aims to meet this need by delivering sustainable, responsible, simpler, and more reliable logistics outcomes, 
supporting its mission to integrate the world.

Decarbonizing logistics is a core part of this vision. Maersk is working to lead the industry toward a carbon-neutral future. Its 
investments in low-carbon technology have reduced carbon emissions by 40% over the past decade, and the company is 
accelerating progress to reach net zero by 2040.

In addition to ocean decarbonization, Maersk is focusing on reducing greenhouse gas emissions from inland transportation. 
The company plans to expand low-emission inland solutions across transport modes so that by 2030, at least 30% of cargo 
is moved using low-emission fuels or energy. To reduce greenwashing risk and provide transparent decarbonization 
services, Maersk has developed Low-Emission Inland Transportation Services (Alternative Technologies and/or Fuels with 
GHG Emission Visibility) globally, using alternative technologies or fuels with visible GHG emissions data.

In Maersk Great China Area, we have launched the Low-Emission Inland Transportation Services based on electric heavy-du-
ty container trucks, offering a comprehensive solution that includes low-carbon vehicle deployment, GHG reduction 
accounting, and data visibility. Based on test data and operational experience, the Energy Transition Execution team 
developed a platform for the service, including raw data collection, GHG accounting, environmental attributes transfer and 
data visibility. This platform is verified by third-party to ensure transparency and credibility. GHG accounting follows widely 
recognized industry standards such as the Global Logistics Emissions Council (GLEC) Framework and the Greenhouse Gas 
Protocol (GHG Protocol), covering the full lifecycle of GHG emissions from well to wheel. After electric truck transport 
operations, the platform collects transport raw data and calculates emissions. The equivalent amount of renewable electricity 
certificates (GEC-China Green Electricity Certificate) can be coupled with the service according to the customers’ needs.

CASE STUDY 4  Low-Emission Container Transportation Solution

AI can help increase the vehicle utilization ratio and 
provide optimized routes based on commercial needs and 
fuelling/charging stations, which could increase operation 
efficiency, reduce the energy consumption, improve the 
service quality, helping turn EV trucking from ‘possible’
 into ’productive, efficient, and reliable‘.

Jeffrey Wang
GCA Supplier Operations Manager, Maersk

Background

Solution: Low-Emission Inland Transportation Services

Since the service launch, Maersk has continuously collaborated with partners in the ecosystem to push vehicle and infrastruc-
ture development. Over the past few years, Maersk GCA EV capacity and cargo volume using EV container trucks have grown 
exponentially. By Q3 2025, the service has been deployed across 9 ports in North, East, and South China, covering 38+ cities. 
The service has also attracted lots of market attention and received positive feedback from customers. For instance, a major 

multinational e-commerce retailer signed a logistics service 
contract with Maersk, using the low-emission inland transpor-
tation service to handle approximately 7,000 containers (40’) 
for port-related operations.

Recently, together with partners, we launched a pilot program 
- “Low-Emission Container Transport Routes around 
Shanghai Port,”covering the areas within 250 km from 
Shanghai port, once the pilot finished, we will copy the 
experience to other ports. Looking ahead, Maersk is willing 
to work with ecosystem partners to explore the new 
models and technologies and accelerate the landside 
low-emission transportation.

Key Achievements and Next Steps
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A 2025 industry survey found that 61% of banks incor-
porate climate factors into their probability-of-default 
(PD) models, 43% into loss-given-default (LGD) 
estimates, and 36% into IFRS 9/CECL expected-loss 
estimates. By contrast, only about 18% had integrated 
climate into their internal-rating (IRB) credit models.  In a 
2020 European banking survey, 70% of banks reported 
integrating climate risk into traditional risk assessments, 
and roughly 85% had performed climate scenario 
analysis. These figures mirror a broader shift: for exam-
ple, ECB supervisors now report that >90% of banks 
consider themselves materially exposed to climate risks 
(up from ~50% in 2021). 75,76,77

Climate risk is well positioned to migrate from 
advisory analytics to decision-critical financial 
infrastructure, as it already intersects with binding 
control points in the financial system. Physical and 
transition risks are explicitly embedded in credit 
approval and expected credit loss provisioning under 
IFRS 9, in insurance underwriting and premium setting, 
in portfolio risk limits, and in supervisory stress-test-
ing regimes administered by the ECB, PRA, and MAS. 
Despite this institutional penetration, operational 
integration remains constrained by the design of 
legacy risk models, which were built for low-dimen-
sional, stationary financial variables rather than spatially 
explicit, non-linear, and path-dependent risk drivers.

Conventional credit and market risk frameworks are 
optimized for historical cash-flow projections, 
leverage ratios, and short-horizon volatility measures. 
Climate risk, by contrast, emerges from interacting 
physical processes, infrastructure exposure, energy 
systems, and policy trajectories; it varies sharply 
across geographies, and propagates through thresh-
old effects and cumulative damage. Its observables 
are heterogeneous and frequently multimodal, 
spanning physical climate signals, geospatial expo-
sure, economic structure, and regulatory dynamics. 
This structural mismatch – rather than a lack of 
conceptual recognition – constitutes the primary 
barrier preventing climate risk from being priced in 
financial markets.

Artificial intelligence has been widely deployed in sustainable finance across carbon markets, green electricity trading, 
and ESG investment analytics. However, in most institutions, its functional role remains confined to the advisor layer, 
improving disclosure, reporting efficiency, or qualitative assessment. The decisive frontier for AI adoption lies not in 
producing better narratives, but in enabling climate and transition risks to be transformed into quantifiable, compara-
ble, and auditable financial risk factors that can be directly embedded into pricing, capital allocation, and 
balance-sheet governance. This shift marks the transition of AI from an advisor to an arbiter, and ultimately to an 
orchestrator of financial decision-making.

Climate-related Financial 
Risks Management

Finance & Investment

Banks reported integrating climate risk into 
traditional risk assessment

70% Source: © 2025 Aon plc. All rights reserved

In an era defined by intensifying climate uncertainty, the imperative for organizations is not merely to respond, but to anticipate 
and adapt. Climate Risk Monitor exemplifies a shift in how businesses engage with climate intelligence – offering not just data, but 
actionable insights that inform strategic decisions.

As climate uncertainty intensifies, organizations are shifting from responding to anticipating and adapting climate risks. 
Aon’s Climate Risk Monitor exemplifies a shift of climate intelligence from data to actionable insights that inform strategic 
recommendations.

Developed by Aon’s Climate Hub in Singapore, with support from the Singapore Economic Development Board, Climate Risk 
Monitor integrates historical climate data, IPCC emissions scenarios and CMIP6 global climate model outputs across 
multiple time horizons and climate scenarios. The tool screens risk for seven climate perils, both acute and chronic, 
including drought, extreme rainfall, heat stress and cooling demand, freeze, wildfire potential, tropical cyclone, inland and 
coastal flooding. Once location, value, and occupancy data is submitted, the tool generates immediate information at asset 
and portfolio levels with reporting for up to 15,000 locations globally for any one entity, with heatmaps and hazard maps to 
visualize spatial patterns of geographically diverse risk. 

CASE STUDY 5  Empowering Business Resilience with Climate Risk Monitor

Climate change is no longer a distant threat — 
significant and escalating climate risks are reshaping 
business strategy across the globe. Aon’s Climate Risk 
Monitor equips organizations with the deep insights 
needed to successfully manage these risks, seize 
emerging opportunities, and build resilience in the 
face of future climate-related challenges.

Jennifer Richards
Chief Executive Officer, Asia Pacific, Aon   

Climate Risk Monitor uses machine learning to process huge 
climate data, interpolate downscaled climate projections and 
granular historical climate data to deliver high resolution and 
detailed information about current and future climate 
conditions for each location. 

When scientific rigor is paired with practical business insight, 
the resulting clarity enables leaders to navigate uncertainty 
with greater confidence. With its global reach and deep 
insights, Climate Risk Monitor is a vital resource for risk and 
sustainability managers across multiple sectors. As climate risk 
becomes a defining factor in long-term business viability, this 
tool offers a strategic path to resilience.

By pinpointing the most vulnerable locations within a portfolio, organizations can move beyond reactive measures and proac-
tively strengthen their assets against the forces of change. 

Integrating climate analysis into acquisition strategies ensures that long-term financial health is not undermined by hidden 
exposures, reflecting a more holistic approach to value assessment in an evolving risk landscape. 

Asset Resilience

Due Diligence

As insurance markets recalibrate in response to new climate realities, robust, data-driven insights become essential for 
negotiating terms that reflect genuine risk, fostering resilience through tailored coverage. 

Supports disclosures aligned with regulatory requirements, helping organizations meet stakeholder expectations and compli-
ance standards.

Risk Transfer

Regulatory Reporting

Climate Risk Monitor provides users insights across four foundational domains:
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The central challenge is therefore quantitative translation. 
Climate impacts unfold over long horizons, while financial 
decisions require forward-looking, scenario-consistent 
estimates that can be mapped to balance sheets, income 
statements, and cash-flow dynamics. Artificial intelligence 
addresses this gap by functioning as a computational 
interface between physical climate processes, economic 
exposure, and financial risk parameters. Rather than 
supplanting established financial models, AI augments them 
by resolving data integration, dimensionality, and non-lineari-
ty constraints that were previously prohibitive at scale.

At the physical-risk layer, AI transforms climate hazards into 
probabilistic, asset-level risk signals that are compatible with 
financial transmission. These signals represent hazard-inten-
sity distributions rather than losses, and therefore parame-
terize downstream vulnerability and damage relationships. 
Transition risk follows a complementary pathway in which AI 
converts unstructured information on corporate strategy, 
policy exposure, and capital allocation into structured 
indicators that can be projected into revenue, cost, and 
investment trajectories under alternative policy and 
technology pathways.

Climate impacts become financially operative only when 
translated into core risk parameters. In credit risk, 
climate-adjusted losses affect both the probability of default 
and the loss given default. In structural credit models, 
projected climate damages reduce expected asset values 
and increase asset volatility, thereby compressing 
distance-to-default and raising climate-adjusted default 

probabilities. In parallel, climate exposure metrics derived 
from physical and transition pathways can enter statistical 
default models as additional explanatory variables, allowing 
their marginal contribution to default risk to be estimated 
and back-tested alongside conventional financial ratios.

Loss given default is particularly sensitive to climate risk 
through its effect on collateral valuation. Acute hazards 
generate immediate physical damage, while chronic exposure 
progressively erodes market liquidity and insurability, altering 
recovery expectations even in the absence of a discrete 
shock. By quantifying climate-adjusted liquidation values net 
of insurance recovery and time-to-sale effects, AI transforms 
LGD from a static assumption into an exposure- and 
scenario-dependent function, enabling differentiated 
collateral haircuts, covenant triggers, and pricing adjustments 
consistent with observed risk.

At maturity, these components converge into an orchestrat-
ed risk-pricing architecture. Hazard scenarios, exposure 
mappings, and financial transmission models are continuous-
ly updated and propagated into climate-adjusted default 
probabilities, loss rates, and expected losses that directly 
inform credit pricing, portfolio limits, capital allocation, and 
supervisory stress testing. Governance is preserved through 
versioned data pipelines, model documentation, and audit 
trails, ensuring interpretability and regulatory traceability. In 
this configuration, AI functions not as a forecasting overlay 
but as a computational layer embedded within the core 
machinery of financial risk management.

Source: BlueOnion

BlueOnion, an ESG innovator in the Cyberport community, is a climate and green-finance platform that enables banks, asset 
managers, and corporates to evaluate ESG and climate claims with the same discipline applied to financial data. Operating 
across Asia-Pacific and Europe, the platform focuses on a persistent failure point in sustainable finance: sustainability 
disclosures are abundant, but evidence is fragmented, inconsistent, and difficult to verify across products, portfolios, and issuers.

At the investment product level, BlueOnion applies a holdings-based, bottom-up approach across equities, corporate bonds, 
sovereign debt, and other instruments. Instead of relying on aggregated ESG scores, the system ingests primary disclosures 
directly from issuers, structures them into standardized datapoints, and validates them against external sources to surface 
inconsistencies, missing data, and potential greenwashing signals that are often invisible in top-down assessments.

Funds and portfolios are assessed across three integrated dimensions – sustainability performance, consistency between 
stated environmental and social characteristics or objectives, forward-looking climate risk. A key differentiator is that these 
assessments are fully traceable. Users can move from portfolio conclusions back to individual holdings, disclosures, and 
validation checks, enabling defensible internal decisions and regulatory-facing documentation.

Beyond analytics, BlueOnion standardizes how banks and distributors conduct sustainability due diligence on funds and 
asset managers. Asset managers can reuse validated responses and keep information current, while gatekeepers can assess 
not only portfolio composition, but also whether stated sustainability approaches are reflected in actual investment and 
engagement practices.

BlueOnion applies the same evidence-driven structure to corporate sustainability reporting. Climate scenario analysis and 
stress testing can also be layered into the same environment, allowing management to link transition plans and decarboniza-
tion targets to quantified risk and forward-looking assumptions rather than narrative commitments.

CASE STUDY 6 Making ESG and Climate Claims Auditable at Scale

Green FinTech innovators complement this 
ecosystem by providing sophisticated digital 
platforms for ESG reporting, green asset tokeniza-
tion, climate risk modelling, AI-powered wealth 
management and sustainable finance instruments.

Eric Chan
Chief Public Mission Officer, Cyberport

What the Platform Does

Corporate and SME Use Cases

In early deployments, BlueOnion has demonstrated that sustain-
ability assessment can be both more rigorous and more operation-
ally efficient when built as digital infrastructure rather than advisory 
processes, supporting approved green-fintech projects across 
asset managers, private banks, and retail banks. Together, these 
implementations position BlueOnion as a practical assurance layer 
between issuers, financial institutions, and regulators, shifting 
sustainable finance from narrative-based signaling toward 
auditable, comparable, and continuously updated, evidence-based 
capital allocation.

Impact and Validation

Figure 3.3a Management Measures by Climate Risk Domain

Risk   
Domain

Primary 
Data Input

AI / Model 
Approach

Auditable 
Intermediate Output

Financial 
Risk Output

Satellite imagery, SAR   
data, climate reanalysis, 
disaster tracks, asset 
geolocation

Sea-level rise indicators, 
heat stress indices, 
drought metrics, 
insurance availability

GCM outputs, historical 
high-resolution observa-
tions

Corporate disclosures, 
policy texts, Capex data, 
emissions and energy 
profiles

Financial statements, 
asset registers, 
insurance coverage

CNN-based spatiotem-
poral models, event 
detection networks

Statistical–ML hybrid  
models with vulnera-
bility curves

GAN-based or 
physics-informed 
generative models

Topic modeling, 
sentiment analysis, 
Transformer-based 
NLP and relation 
extraction

Structured transmis-
sion models calibrated 
with ML

Asset-level hazard   
intensity, damage 
probability distributions

Long-term loss rate   
trajectories, insurability 
thresholds

High-resolution, 
scenario-consistent 
hazard maps

Strategy-capital   
consistency scores, 
policy exposure 
indicators

Climate-adjusted 
BS/IS/CF projections

Asset impairment, 
business interruption 
losses, PD and LGD 
adjustments

Collateral haircuts, tenor 
adjustments, regional 
exposure limits

Forward-looking PD/LGD 
under regulatory stress 
scenarios

Revenue and cost 
pathway adjustments, 
credit spread and 
valuation impacts

Climate-adjusted PD, 
LGD, ECL, capital 
consumption

Physical 
climate risk 
(acute)

Physical 
climate risk 
(chronic)

Climate 
downscaling

Transition risk

Financial 
transmission
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Certification & Global TradeFrauds and Greenwashing Detection

In contemporary global trade, compliance certification is no longer a procedural formality but a non-negotiable 
condition for market access, constituting the infrastructural rule system governing cross-border circulation of goods. 
Regulatory regimes such as the EU Carbon Border Adjustment Mechanism (CBAM), the Digital Product Passport 
(DPP), and long-established conformity frameworks, such as CE, IEC, and ISO, converge on a single principle: without 
certification, products cannot legally circulate. These regimes span product safety, electromagnetic compatibility 
(EMC), radio equipment (RED), chemical compliance (REACH, RoHS), energy efficiency, carbon footprinting (LCA/EPD), 
and enterprise-level ESG performance, collectively forming a dense but fragile global trade governance architecture. 
Frankie Chang, CEO of Forbes China Group, observes that the market increasingly rewards measurable decarboniza-
tion today. Investors, customers and regulators are aligned in demanding verifiable data and tangible outcomes. 
Technologies with intrinsically MRV-compatible features such as CCUS, high-efficiency storage and green hydrogen 
are taking center stage.78

As climate finance scales, fraud and 
greenwashing are increasingly driven 
by the disconnect between narrative 
disclosure and verifiable physical or 
operational reality, particularly in 
shipping, logistics, energy infrastruc-
ture, and port-based transshipment. AI 
enables a shift from disclosure-driven 
trust to evidence-based verification by 
fusing independent data streams 
across space, time, and modalities. 
According to Kristian Flyvholm, Chair & 
Chief Executive Officer of the Institute 
of Sovereign Investors, AI can screen 
vast unstructured datasets to surface 
credible projects, estimate missing 
emissions, and distinguish real transi-
tion plans from greenwash, improving 
engagement with governments and 
MDBs.

At the operational level, AI integrates 
satellite optical imagery, synthetic 
aperture radar (SAR), radar-shadow 
analysis, and vessel Automatic Identifi-
cation System (AIS) data to detect 
inconsistencies between reported 
activities and observed behavior. SAR 
enables the identification of vessel 
presence and infrastructure activity 
under cloud cover and at night, while 
AIS pattern analysis exposes anomalies 
such as signal gaps, improbable 
trajectories, or repeated offshore 
rendezvous. When combined with port 
call records and emissions factors, 
these signals enable automated 
detection of false berthing claims, 
undeclared ship-to-ship transfers, and 
emissions laundering through nominally 
“low-carbon” port transshipment.

At the corporate level, AI detects 
greenwashing by quantifying diver-
gence between strategic narratives 
(“Talk”) and observable actions 
(“Walk”). Natural language processing 
models identify vague commitments, 
passive constructions, and non-opera-
tional climate language, and systemati-
cally cross-reference these signals 

with capital expenditure, R&D intensity, 
asset-level investments, and 
supply-chain behavior. Persistent 
misalignment is converted into 
probabilistic greenwashing risk 
indicators suitable for due diligence, 
monitoring, and portfolio oversight. Dr. 
Fu Xiaolan, Founding Director of the 
Technology and Management Centre 
for Development, observes the 
revolutionary efficiency boost for AI in 
valuations. She noted that traditional 
valuation and due diligence processes 
are extremely costly and take weeks or 
months, whereas the AI valuation tool 
can significantly reduce costs and time 
by delivering results quickly with high 
accuracy.

By embedding multimodal verification 
into financial workflows, AI shifts 
greenwashing detection from an ex 
post reputational assessment to an 
ex-ante risk management approach, 
directly affecting eligibility, pricing, and 
risk allocation for green bonds, sustain-
ability-linked loans, and carbon market 
instruments.

In this configuration, AI-based fraud 
and greenwashing detection functions 
as trust infrastructure rather than 
auxiliary compliance, anchoring climate 
claims in independently verifiable 
evidence and reinforcing market 
discipline across climate-aligned 
financial systems.

Innovation in climate finance 
and market mechanisms is 
essential to ensure credible and 
sustainable technology transfer. 
AI-enhanced transparency 
enables investors to distinguish 
substantively low-carbon 
projects from narrative-driven 
claims, reducing greenwashing 
risk and strengthening the 
integrity of sustainable finance.

Zhou Yiping
Founding Director, United Nations 
Office for South-South 
Cooperation

Figure 3.4a Manpower Replaced in Certification & Global Trade Activities
Source: WeCarbon Analysis

From Labora-
tory to Data 
Factory

From Expert 
Judgement to 
Control 
Systems

Cross-border 
Compliance 
Documents 
Automation

Testing is organized around 
labor-intensive, physical workflows 
involving shipment queues and 
serial re-testing cycles that create 
significant time latency. 
Data remains trapped in static PDF 
reports, limiting real-time visibility 
and creating information asymme-
try that slows down design 
feedback loops.

Automated test generation
Dynamic resource orchestration
Self-healing execution
Real-time analysis and feedback
Automated data ingestion and 
quality control
Contextualisation through metadata
Cryptographic anchoring and 
distributed ledger notarisation

Subjective, Opinion-Driven Expert 
Review
Relying on manual interpretation of 
thousands of pages of ambiguous, 
frequently changing standards (e.g., 
ISO, IEC). 
The subjective process is hard to 
audit, prone to human inconsisten-
cies across jurisdictions.

Regulatory rule parsing
Semantic disambiguation and 
governance
Evidence-rule matching

Fragmented, Manual Document 
Assembly
Relying on manual search, transcrip-
tion, and reconciliation of data 
across siloed systems to create 
Technical Files, Declarations of 
Conformity, and CBAM filings. 
The process is costly, error-prone, 
and creates high compliance risk.

Automated data extraction
Data cleaning and cross-validation
Semantic structuring and linkage
Schema and logic parsing
Data orchestration and generation
Consistency assurance and version 
control

Manual, Artisanal Workflows & 
Information Asymmetry

70-90%

50-75%

80-95%

Activity in 
Certification & 
Global Trade

Corresponding 
Challenge of Activity

Replaced with 
Agentic AI Feature

% of Manpower 
Estimated to Be 
Replaced
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Despite their systemic importance, certification and testing remain organized around labor-intensive, document-centric 
workflows that exhibit structural inefficiencies and escalating failure risks. Key bottlenecks include:

Beyond efficiency gains, AI fundamentally redefines trust in sustainability and trade by shifting certification from 
human-reviewed documentation to machine-verifiable fact streams. Its critical contribution lies in converting 
physical testing processes into tamper-resistant digital evidence, a prerequisite for regulations demanding lifecy-
cle-level transparency such as battery DPPs:

Certification automation therefore functions not merely as a productivity enhancement but as foundational infrastructure 
for sustainable trade, enabling material and energy efficiency gains through test reuse and optimized sampling, expanding 
safety and performance coverage by making large-scale and high-frequency testing economically viable, and supplying 
credible, high-granularity upstream data for carbon accounting, lifecycle assessment, and digital product passports – 
without which higher-level sustainability models lack empirical grounding. In this transition, AI does not simply accelerate 
certification processes; it fundamentally restructures how evidence is generated, how trust is established, and how compli-
ance is enforced in the global economy.

Conventional certification regimes are fundamentally opinion-driven, relying on expert interpretation, narrative justification, 
and manual review of evidence. AI-driven certification replaces this paradigm with a deterministic control system grounded 
in verifiable data streams and executable rules, transforming compliance assessment from a subjective judgment process 
into a repeatable, auditable decision workflow.

In this architecture, certification ceases to be a static expert opinion captured in a report and becomes an executable 
control system in which rules, evidence, and decisions are continuously aligned, traceable, and reproducible across products, 
jurisdictions, and regulatory updates.

Certification requirements are rising in both volume and rigor. Dr. Robert Slone, Senior Vice President and Chief Scientist 
and Innovation Officer at UL Solutions, notes that people trust certifications when outputs are reproducible, data sources 
and assumptions are clear, and independent experts have vetted the underlying methods, with AI serving as a facilitator, not 
a replacement, for robust assurance. As sustainability-linked regulations expand and evolve, products must demonstrate 
not only technical compliance but also verified carbon footprints, supply chain ESG attributes, and lifecycle transparency. In 
this environment, certification services that rely mainly on manual work will soon consume greater economic and operation-
al resources.

From Laboratory to Data Factory

From Expert Judgement to Control Systems

AI-driven certification reconfigures this paradigm by transforming laboratories from artisanal testing units into programma-
ble data factories. At its core lies test orchestration, an AI-mediated control layer that plans, executes, monitors, and 
optimizes testing workflows end to end:

Automated Test Generation 
AI agents parse regulatory knowledge graphs to derive test requirements directly from declared product functional-
ities, automatically generating compliant test plans and cases aligned with specific directives and standards.

Dynamic Resource Orchestration
Containerized test environments and AI schedulers allocate workloads across instruments and cloud resources 
based on priority, duration, and availability, enabling parallel execution and maximized equipment utilization.

Self-healing Execution 

Adaptive AI testing systems detect interface changes or environmental anomalies during execution and autono-
mously adjust scripts, reducing manual intervention and maintenance overhead.

Real-time Analysis and Feedback

Test outputs are continuously analyzed, with defects automatically classified, root causes inferred, and remediation 
guidance generated, compressing development-test-fix cycles.

Regulatory Rule Parsing
Using advanced document intelligence and natural language processing, AI systems decompose thousands of pages of 
ISO, IEC, and sector-specific standards into machine-executable logic by extracting normative thresholds, test methods, 
conditional clauses, and cross-references, and encoding them into structured knowledge graphs that convert qualitative 
regulatory language into quantitatively verifiable constraints.

Semantic Disambiguation and Governance
Ambiguous regulatory expressions and recursive references are resolved through probabilistic confidence scoring and 
human-in-the-loop escalation, ensuring that low-certainty interpretations are reviewed by domain experts and continu-
ously fed back into model training to reduce hallucination risk and improve rule fidelity over time.80

Evidence–rule Matching
Parsed regulatory rules are automatically matched against cryptographically anchored digital test evidence, enabling AI 
systems to locate relevant sensor streams, timestamps, and test conditions and to verify compliance deterministically – 
for example, validating surface-temperature rise limits directly against calibrated thermal data rather than narrative test 
summaries.

Raw data streams are continu-
ously captured from LIMS, MES, 
BMS, and IoT-enabled instru-
ments, with AI models performing 
anomaly detection, drift correc-
tion, and intelligent imputation to 
ensure baseline data integrity.

Each data point is enriched with 
precise timestamps, device 
identifiers, standard versions, 
operator context, and environ-
mental parameters, and is bound 
to a unique product or batch 
identifiers.

Standardized data packages are 
hashed using cryptographic 
algorithms (e.g., SHA-256), and 
the resulting fingerprints are 
recorded on distributed ledgers, 
creating immutable, 
time-stamped proof of test 
occurrence and content without 
exposing raw data.79

Automated Data Ingestion 
and Quality Control

Contextualization Through 
Metadata

Cryptographic Anchoring and 
Distributed Ledger Notarization

Time Latency and Iteration Drag
Physical sample shipment to third-party laboratories, 
fixed testing queues, and serial re-testing cycles caused 
by minor design nonconformities routinely extend 
certification timelines by weeks or months, delaying 
market entry and eroding competitive windows.

Documentation Burden
Technical Files – encompassing design drawings, risk 
assessments, Declarations of Conformity, and multi-ju-
risdictional translations – are manually assembled, 
versioned, and archived for up to a decade, making 
them costly, error-prone, and difficult to maintain.

Cost Escalation
Laboratory testing, retesting after failure, and reliance 
on external compliance consultants collectively impose 
significant financial overhead, particularly for 
hardware-intensive products.

Information Asymmetry
Test data are generated and retained within laboratory 
systems, while manufacturers typically receive only static 
PDF reports, limiting real-time visibility, root-cause 
diagnosis, and design feedback loops.

Coordination Friction
Communication with certification bodies, particularly EU 
Notified Bodies, relies heavily on asynchronous email 
exchanges across time zones, leading to prolonged 
clarification cycles and regulatory uncertainty.

Consistency and Regulatory Risk
Manual aggregation across design, production,  and 
testing pipelines often leads to internal inconsistencies;  
regulatory updates (e.g., RED revisions) require exhaus-
tive manual audits across product portfolios, exposing 
firms to fines, shipment holds, or forced inventory 
write-offs.

Arbiter

Interpreter

Orchestrator

Orchestrator

Interpreter
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Source: SIEMENS

Carbon transparency is now required for market access as climate rules reshape global trade. The EU Carbon Border 
Adjustment Mechanism (CBAM) and the Digital Product Passport (DPP) make carbon data a regulated, auditable production 
factor. Siemens China responds with a full-cycle digital approach that embeds AI-driven carbon intelligence into industrial 
and supply chain systems.

Siemens uses a closed-loop model of data transparency, accurate accounting, trusted certification, and decision support to 
move compliance into daily operations. The foundation is SiTANJI, Siemens’ carbon portfolio management platform, which 
integrates industrial data streams, digital twins, blockchain-based traceability, and AI analytics to deliver full lifecycle 
emissions accounting aligned with international standards. Digital twins tie emissions to physical processes and product 
flows, while blockchain enables secure, auditable data exchange across supply chain partners and third-party verifiers, 
reducing manual reconciliation and strengthening cross-border compliance readiness.

Siemens integrates WeCarbon’s Formist™ AI Agent on SiTANJI to provide a joint AI Form Solution for sustainability reporting, 
primarily CBAM, that transforms reporting from a months-long, consultant driven effort to a largely automated process 
completed in hours. The AI guides submissions step by step, maps uploaded operational data to templates, auto-fills 
required fields, parses historical records, and flags anomalies with corrective recommendations. This enables non-experts 
to complete submissions without specialized carbon or legal expertise, significantly shortens reporting cycles, 

CASE STUDY 7 AI-Enabled Carbon Compliance for Global Green Trade

In the face of increasingly complex international green trade 
barriers such as the EU’s CBAM and battery passport, many 
export-oriented SMEs are trapped in a compliance dilemma 
of ‘not knowing what to do’ and ‘not being able to do it’. 
Siemens, in collaboration with leading innovators, lowers 
these barriers through technological innovation, delivering 
inclusive solutions that significantly reduce both technical 
complexity and adoption thresholds for enterprises.

Hu Jianjun
Vice President, Siemens China

reduces reliance on external consultants, lowers 
compliance costs, and improves internal control of 
carbon data while maintaining traceability and audit 
readiness. By embedding regulatory logic in live 
production data, enterprises can monitor exposure, test 
sourcing or production changes, and identify compliance 
risks earlier. 

The practice is amplified through the Siemens Xcelerator 
ecosystem, which combines industrial AI, IoT, automa-
tion, and partner solutions into an interoperable, scalable 
platform that helps enterprises of different sizes meet 
green trade requirements while controlling total 
compliance costs.

The global trade ecosystem, the circulatory system of the world’s economy, stands at a critical juncture. Traditional mecha-
nisms for certifying and verifying climate-related claims – largely reliant on static documentation and periodic audits – can 
no longer meet the speed, complexity, and transparency required amid rising greenwashing risks and new regulations. This 
chapter examines how a powerful synergy of artificial intelligence (AI), blockchain, and advanced data capture technologies 
is creating a new framework for global trade – one built on dynamic, data-driven trust and verifiable climate credentials.

Document automation provides straightforward support for sustainable global trade. It helps small and medium-sized 
enterprises meet compliance requirements by replacing manual paperwork with low-cost, automated workflows. It also 
reduces trade friction by cutting delays, penalties, and re-audits caused by documentation errors or inconsistencies. It 
increases the flow of genuinely sustainable products by turning verified environmental performance into faster, more 
reliable market access rather than leaving it as a static label. Liao Shuanghui, Chairman of the Shanghai Jinsinan Institute 
of Finance, highlights that AI-driven smart compliance systems can automatically check whether products meet interna-
tional green certification requirements, reducing manual review costs and lowering error rates.

Cross-border Compliance 
Documents Automation

Schema and Logic Parsing
Modern multimodal document intelligence models interpret not only the textual content of regulatory templates but also 
their layout, tables, and visual structures, allowing AI systems to infer field semantics and validation logic even as official 
forms and schemas evolve.

Data Orchestration and Generation
Using retrieval-augmented generation frameworks, AI systems query the SSoT for authoritative data, perform required 
calculations (e.g., emissions aggregation or recycled content ratios), populate structured fields with precision, and generate 
compliant narrative disclosures when free text is required.

Consistency Assurance and Version Control
Because all documents are drawn from a shared SSoT, cross-document consistency is enforced by design. When 
upstream data are updated, affected documents are automatically identified, versioned, and regenerated, with complete 
audit trails preserved for regulatory inspection.

Global trade runs on paperwork. Each transaction depends 
on completing, verifying, and reconciling documents such 
as customs declarations, certificates of conformity, LCA 
and EPD disclosures, CBAM filings, and due diligence 
records required by banks, insurers, and buyers. This 
document-first setup still relies on manual searches, data 
entry, and reviews, which slows work and increases 
compliance risk. Rembrandt Koppelaar, Lead for Global & 
EU DPP Regulations Observatory, CIRPASS-2, highlights 
that digital battery passports and similar products should 
use the same data format to scale without format-to-for-
mat translation, supported by modular templates, consis-
tent access rules across operators, and standardized 
presentation so shoppers see the same information 
regardless of the manufacturer.

AI-powered document intelligence shifts this from a 
people-driven process to a data-driven model. A unified 
data backbone can feed different regulatory, commercial, 
and financial documents as needed. Instead of asking staff 
to find and retype information, AI builds a programmable 
compliance layer that generates documents from validat-
ed data. This shift happens in two closely linked stages.

The foundation of document automation is consolidating 
fragmented internal and external data into a unified, 
auditable data model that supports regulatory-grade 
outputs. AI platforms ingest structured data directly from 
enterprise systems and simultaneously extract key 
variables from unstructured sources – including PDFs, 
scanned supplier declarations, emails, invoices, and test 
reports – using OCR, NLP, and multimodal machine-learn-
ing techniques.81 Extracted data are automatically normal-
ized across formats and units, reconciled against business 
rules and transactional records and flagged for anomalies 
or contradictions that would otherwise propagate 
compliance errors downstream. Cleaned data are ingested 
into a central data model or knowledge graph that 
explicitly links products to their documents and to energy 
or emissions data, forming a traceable, end-to-end view of 
product compliance.

Once an SSoT is established, AI-driven document intelli-
gence and generative models automate the creation and 
maintenance of regulatory and trade documentation at 
scale.

AI can automate and monitor trade compliance, tracking 
carbon, water, and energy, so companies can meet audit 
and certification requirements with less red tape.

Hon. Karim Fatehi OBE
Chief Executive Officer, the London Chamber of 
Commerce and Industry

Advisor Orchestrator
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POWERING THE PROGRESS: 
INCUBATION, EDUCATION, 
AND GOVERNANCE

© Dawn, Cao Pu, Finalist of 2025 Climate and Sustainability Photography Awards

Australia can be sort of pro innovation and pro integrity, 
by scaling obligations with risk and impact, but by still 
keeping our guardrails compatible with our norms.

Hon. Matt Kean
 Chair of Climate Change Authority, Australia
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Incubation Beyond Capital

Incubation for AI Innovation

AI has changed how sustainability solutions are built 
and scaled. Many AI-native startups now use 
pre-trained foundation models, cloud infrastructure, 
and modular software stacks, reducing the need for 
large in-house R&D teams and rigid organizational 
structures. Xu Jieping, Chief Executive Officer of Plug 
and Play China, identifies that many leading entrepre-
neurs are born global today, focusing from the start on 
real pain points and global markets with the end goal in 
mind, and using profitable business models to keep 
addressing climate and sustainability challenges. As a 
result, many AI-native companies reach an MVP and 
early market validation with fewer than 30 people, 
sometimes launching across regions within months. 
This trend appears in accelerators and early-stage 
funding programs worldwide, where AI-native startups 
account for a growing share of new entrants. 

However, faster MVP cycles have not translated into 
proportionally higher rates of large-scale deployment. 
Yukio Sakaguchi, President of Clean Energy Research 
Lab, highlights that what we really need is not another 
“shiny algorithm,” but boring and painful yet essential 
upgrades and reforms in industrial use cases.

This gap between fast testing and slow deployment 
changes what limits AI innovation. Capital matters more 
for scaling, funding long deployment cycles, shared 
infrastructure, risk management, and coordination 
across multiple stakeholders. When raising capital for AI 
companies, three broad capital archetypes emerge. 
These categories are not strict or mutually exclusive, 
and many projects combine multiple forms of capital 
support. 

Xiao Jie, General Manager of New Energy Nexus China, highlights that 
what’s often missing in this field isn’t capital – it’s trust infrastructure: 
an environment where startups, corporates, financiers, and regulators 
can test ideas safely and learn from failure. Leading practice recognizes 
that other supports beyond capital are essential to scale up an AI business. 

Building on that point, a key reason many top incubators, such as 
Hub71 and Plug and Play, succeed is that they create an all-in-one 
ecosystem: they bring startups, corporates, investors, government 
and regulators, pilot opportunities, and shared services into a single, 
coordinated platform. This reduces coordination friction, makes 
experimentation safer, accelerates learning, and shortens the path 
from proof-of-concept to scale.

Hub71 concentrates capital, corporates, and 
government entities that are interested in 
global ClimateTech solutions in one place to 
speed up the time to market for Climate-
Tech innovators. This also sheds light on the 
importance of ClimateTech solutions for the 
future of the UAE economy.

Ahmad Ali Alwan
Chief Executive Officer, Hub71

Figure 4.1a Main Capital Archetypes

Incentivized by public-interest 
missions of translating frontier 
research into societal and 
economic application

Target at a pipeline of deep-tech 
spin-offs and licensable frontier 
technologies

Favor projects with high scientific 
novelty, technical depth, and long 
commercialization horizons

High risk tolerance for technical, 
regulatory, and financial uncer-
tainty

Long research-to-commercializa-
tion time horizon

Incentivized by platform domi-
nance, ecosystem lock-in, and 
long-term corporate competitive 
positioning

Target at a pipeline of startups 
that expand cloud workloads, data 
gravity, and vertical market 
penetration

Favor projects with strong 
strategic fit to internal infrastruc-
ture, product roadmaps, and 
hardware stacks

Medium risk tolerance conditional 
on strategic alignment

Platform expansion and acquisi-
tion-option time horizon

Incentivized by portfolio-level IRR 
maximization through accelerated 
valuation growth and liquidity 
events

Target at a pipeline of VC-ready 
companies optimized for scale, 
growth metrics, and follow-on 
financing

Favor projects with fast execution 
speed, large addressable markets, 
and fast monetization over 
scientific depth

Low risk tolerance

Shorter exit-driven value realization

Opportunist Capital
Driven by Financial and Equity Exit

Patient Capital
Driven by Vision and Strategy

Purpose Capital
Driven by Mission and Mandate

Figure 4.1b Incubation Support Beyond Capital

Early AI teams lack HR, procurement, 
security, and compliance capacity
Founders spend disproportionate time on 
non-core operations
Operational friction delays pilots and 
customer onboarding

SAFE-based funding combined with in-kind 
operational support (workspace, legal, hiring, 
compliance, market access)
Centralized back-office services shared 
across portfolio companies

GPU access and secure environments 
constrain post-MVP development
Small teams lack bargaining power with 
hyperscalers

AI-as-a-Service packages providing GPU 
credits, secure cloud, and deployment 
tooling
Shared national and regional compute 
platforms

Most deployment failures are domain-driven 
rather than model-driven
Generic founder mentorship shows limited 
impact after MVP
Sustainability applications require cross-dis-
ciplinary coordination

Mentorship structured by deployment roles 
(operators, buyers, regulators)
Co-development tracks linking founders, 
engineers, industry partners, and research 
institutions

Many AI tools lack defined buyers or 
adoption pathways
Pilots fail without predefined data access, 
KPIs, or budgets
Horizontal AI accelerators overproduce 
non-deployable tools

Challenge-based programs with predefined 
datasets, metrics, evaluation criteria, and 
pilot budgets
Application-specific tracks focused on AI 
tied to concrete use cases rather than 
generic AI
Thematic roadshows and matchmaking 
between innovators and use case owners

Regulation is a late-stage failure point for 
sustainability in finance, healthcare, trans-
port, and energy
Unclear compliance blocks commercialization
Buyers require regulatory assurance before 
adoption

Regulatory sandbox participation covering 
data governance, model transparency, and 
human oversight
Limited-scope supervised commercial 
deployment prior to full approval
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Win Hearts Above Growth

Tales between Giants and DisruptorsNew financing models are expanding funding options for 
early-stage AI and sustainability projects, lowering 
dependence on traditional venture capital and institu-
tional grants. In addition to equity investment, decentral-
ized funding pools, crowdfunding, and revenue-based 
financing provide flexible capital that aligns with the risk 
and cash flow needs of applied AI development. These 
models can support data- and compute-intensive 
projects, helping teams move from research and proto-
typing to deployment without scaling prematurely or 
relinquishing unnecessary ownership.

Regional cross-border institutions are reshaping AI 
incubation. The China-ASEAN Artificial Intelligence 
Innovation Cooperation Center links complementary 
strengths across locations: advanced R&D in East and 

South China, system integration and industrial coordi-
nation in West China, and application development 
plus market validation across ASEAN. This “R&D-
Integration-Application” structure creates continuous 
feedback across technology development, talent 
development, and real-world deployment. Yang Ming, 
Board Secretary of TusStar, described an “Incubation + 
Investment” model built on “Two Countries, Twin 
Innovation Parks” and “Multi-country, Multi-node” 
networks. Under this approach, innovation parks in 
China and the UK are paired to support two-way flows 
of talent, technology, and capital. Key resources, 
including incubation teams, mentorship, client connec-
tions, and financing, are coordinated across regions. 
This setup helps innovations reach international 
markets and creates opportunities for expansion. 

Jason Ho, President of Macao Technology General Association, and Dr. Lu Gang, Co-founder of BEYOND Expo, both 
advise designing accelerators around guaranteed pilot commitments from corporate-funded PoCs with clear KPIs 
and timelines. Several alternatives matter for engaging giants with disruptors because they shorten the path from 
idea to real deployment signals and reduce integration work:

Partnerships between large companies and startups 
look efficient: big companies offer distribution, data, 
and regulated operating environments, while startups 
offer speed and product focus. In practice, even as 
interest rises, many challenges remain. Surveys show 
about 27% of startups are satisfied with corporate 
engagements, often because progress is slow and 
internal coordination is weak. Startups also point to 
unclear goals, long decision timelines, and pilot projects 
that never scale. 83 These problems are worse in AI, 
where integration and compliance costs are high.

Platform giants create a different kind of pressure. As 
foundation model platforms add more features, they 
absorb many common functions that startups used to 
build. Startups cannot rely on a thin layer of API calls 
and a simple interface, and users and enterprises

increasingly expect a single coherent environment 
where key capabilities are available by default. As Felix 
Ayque, Co-founder and Chief Executive Officer of 
Komunidad, notes, while AI is currently applied in a 
fragmented way across many tools and platforms, the 
long-term direction is toward a unified, AI-powered 
core system that delivers consistency, scalability, and 
intelligence across functions. This raises the bar for 
startups because value must come from clear use 
cases, domain-specific workflows, and outcomes that 
large platforms do not deliver by default. The main risk 
is not competing with the models, but becoming 
irrelevant: startups that do not define a clear problem, 
embed into real workflows, or deliver differentiated 
results may be replaced as platforms evolve, while 
those that own a specific use case and build around 
operating context, data, and execution can still grow.

Scalable AI products succceed beyond download, 
usage, or revenue targets. They become part of daily 
work and life by providing steady value, reducing 
friction, and earning trust. A 2025 global study found 
that many people use AI and expect broad benefits, 
but only 46% are willing to trust AI systems. Useful-
ness alone does not guarantee acceptance. 82

Alejandro Diego Luis Giles R. Katigbak, Chief Risk Officer 
of PHINMA Corporation, believes that using AI in any 
business must first address users’ hesitation to move 
away from manual processes. He highlights that 
training that requires people to sit down and use AI is

especially valuable. People adopt AI when it saves time 
and fits their existing workflows. AI performs best 
when it is built into tools people already use, auto-
mates routine tasks, and gives relevant insights. 
Success should be measured by adoption and 
outcomes such as usage frequency, time saved, task 
completion, and satisfaction, not installs.

Founders should also earn employee trust and 
commitment. Metrics will not motivate teams if they 
do not see real user impact. Alice Ho, Chief Youth 
Officer of Global Alliance of Universities on Climate, 
has observed tech giants moving faster by splitting 
large departments into small squads with clear 
missions, giving them greater autonomy, and using AI 
for supporting analysis. She recognizes that empow-
ered cross-functional teams often iterate faster, take 
more ownership, and respond to feedback better than 
rigid hierarchies.

Engagement with local government also matters. AI 
businesses operating globally should respect local 
laws and regulations, especially regarding data. Hon. 
Karim Fatehi OBE, Chief Executive Officer of the 
London Chamber of Commerce and Industry, advises 
that as small businesses scale, they should focus on 
their products and avoid involvement in geopolitical 
disputes and political themes.

For collaboration to be genuinely generative rather than 
symbolic, startups must be given real on-ground project 
opportunities where they can deploy and refine their 
solutions, generate measurable value, and prove themselves 
in live operational environments.

Butti Almheiri
Co-lead Adaptation Negotiator, UAE Climate Change Special Envoy

Model competitions and challenge programs let large enterprises work with startups without committing to a single 
vendor too early. The enterprise publishes a dataset or a tightly scoped problem, sets shared constraints, defines 
benchmarks, and uses deployment-linked evaluation metrics. Multiple teams compete on the same task, ensuring 
comparable results. Startups invest significant effort because strong performance can lead to pilots, procurement 
opportunities, or paid commercial work, not just prize money. The enterprise reduces selection risk by observing 
which approaches survive real-world constraints before committing budget and integration capacity.

This pattern is already common in energy and sustainability, where buyers want measurable accuracy, robustness, 
and operational fit before adoption. Examples include Elewit and Red Electrica using data challenges to improve 
renewable generation forecasting, Enel running open challenges and AI-focused contests tied to energy use cases, 
and Shell running its Shell.ai hackathon around real energy problems. Similar challenge formats have also been used 
by major energy players such as TotalEnergies and Iberdrola group entities, and by companies like GEN-I that run 
analytics-focused challenges in energy trading and forecasting contexts. The incubation impact is direct: challenge 
formats produce a deployment-shaped signal, shorten time to credible validation, and provide corporates with a 
structured path from open exploration to purchase without betting early on one vendor. 82,84,86,87,88,89,90

Platform marketplaces reduce procurement delays. With catalogs, rankings, discovery, and monetization, startups 
can validate demand through real usage before investing in expensive enterprise sales efforts. OpenAI’s GPT Store 
provides usage-based proof and earnings. 84 The ChatGPT App Directory and Apps SDK improve distribution and 
discovery for third-party tools. 85 A new approach is to prove retention and workflow pull within the platform, then 
use that traction to sell to larger customers from a stronger position.
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The tales of success between giants and disruptors depend less on who is stronger and more on whether they can 
move collaboration from slow, fragmented pilots to repeatable, standardized approaches using challenge-based 
evaluation, platform distribution, and open protocols to align speed, governance, and scale.

Open protocols reduce integration friction, but the bigger point is that they change the go-to-market strategy. 
Instead of selling a standalone product and fighting procurement cycles, a disruptor can plug into giant platforms 
where users already sit. The Model Context Protocol (MCP) is an open standard for connecting AI systems to external 
tools and data sources consistently, reducing the need for one-off connectors. For incubation, this matters because 
distribution and integration move upstream: startups can ship as connectors, tool servers, or workflow extensions 
that run within a platform surface, access enterprise data through standardized interfaces, and demonstrate usage 
before negotiating heavyweight contracts. That lowers integration costs, shortens time-to-deployment signals, and 
enables enterprises to support more third-party capabilities without rewriting internal tooling for each vendor. 

concepts in intuitive, accessible ways, helping students 
build foundational understanding more quickly and 
lowering entry barriers through efficient information 
retrieval and idea generation. At the same time, it is 
worth cautioning against over-reliance on AI, which may 
weaken independent thinking. Rather than banning AI, 
it’s better to guide its use – treating AI as a learning 
assistant rather than an answer machine. For example, 
students may be encouraged to use AI to gather 
sources or draft outlines, but are then required to
verify, challenge, and expand upon AI-generated 
content, cultivating habits of questioning and validation 
alongside efficiency gains.

From a sustainable development perspective, educa-
tion should guide students to apply AI to real-world 
problems, not just abstract exercises. Project-based 
learning already helps students apply AI to practical 
sustainability use cases, such as campus carbon-neu-
trality monitoring and community support systems. 
These interdisciplinary projects develop technical skills 
while fostering sustainability awareness, social respon-
sibility, collaboration, and problem-solving. Floriane 
Gusciglio, General Delegate at ParisTech, stated that 
educators should be committed to training a genera-
tion that can ”speak both languages“ – one is AI, and 
the other is sustainability and climate science. Instead 
of using AI as a shortcut to find information faster, 
students should use AI to create value and solve 
problems to support long-term sustainability. 

Experiences from Southeast Asia further illustrate this 
approach. According to Zhou Yiping, Founding Director 
of the United Nations Office for South-South Coopera-
tion, regional scholarship programs, online learning 
platforms, and investments in public data and digital 
infrastructure have significantly strengthened AI 
literacy among young developers, educators, and 
grassroots communities. AI itself can support digital 
inclusion through intelligent translation, adaptive 
learning, and personalized content delivery, helping to 
build inclusive, lifelong learning ecosystems.

China has supported similar capacity-building efforts 
through short- and medium-term AI training programs, 
joint education initiatives, and academic exchanges 
aimed at developing AI research and application talent 
in developing countries. In Cambodia’s smart agricul-
ture projects, for example, Chinese teams have provid-
ed on-site technical guidance and hands-on training, 
supporting local capacity development and long-term 
self-reliance. These experiences underscore a broader 
lesson: the educational challenge posed by AI is not 
one of control, but of direction – how to harness 
efficiency gains while preserving curiosity, critical 
thinking, and human agency.Educating for AI-Native Generation

AI in Classrooms: Not If, But How

Bringing AI into classrooms is no longer a question of 
whether education systems should respond, but how 
they do so responsibly and effectively. Traditional 
education can be conservative, institutional, and often 
slow to adopt emerging technologies. An estimated 86% 
of learners worldwide already use AI in their studies, with 
around 25% using it nearly daily. Yet many institutions 
continue to rely on restrictive responses – blanket bans, 
automated “AI-detection” tools, or policies that discour-
age AI use altogether. Such measures neither prevent 
widespread adoption nor address the underlying reasons 
students turn to AI: reducing manual workload, supporting 
complex reasoning, or meeting increasingly demanding 
academic requirements. As AI systems increasingly 
surpass human performance in test-based evaluation, 
assessing learning primarily through exam scores or 
answer reproduction becomes less meaningful. 

According to Alice Ho, Chief Youth Officer of Global 
Alliance of Universities on Climate, this shift is especial-
ly important when addressing complex, interdisciplinary 
challenges such as climate change. Higher education 
should embrace the opportunities created by genera-
tive AI while remaining anchored in the core mission of 
teaching. AI tools can explain complex climate science 

AI has made knowledge acquisition fundamentally easier, 
rendering traditional teacher-centered instruction 
insufficient. 

Liu Qing
President, National Innovation Center par Excellence
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AI in Talent: Global Competition for Next-Gen

Countries increasingly use immigration, tax, and visa policies 
to attract AI and technology talent. These tools reduce 
friction and signal openness to globally mobile profession-
als. Singapore offers Tech.Pass and the Overseas Networks 
and Expertise Pass (ONE Pass), which allows senior technol-
ogists and founders to live and work flexibly across roles, 
with long-term residence and family sponsorship. The 
United Kingdom’s Global Talent visa provides a similar route 
for AI and digital leaders, including fast-track settlement 
and no minimum salary requirement. Portugal’s digital 
nomad and startup visas offer pathways from temporary 
residence to long-term settlement, linked to certified 
incubators and EU-supported networks.

Laura Nguyen, Partner at GenAI Fund, notes that many 
founders face stalling not due to technological failure, but 
due to challenges in accessing compute resources, 
obtaining clean data, or achieving customer adoption. 
Dubai’s DIFC Innovation Hub brings many of these elements 
together in a single, integrated platform. As home to a 
cluster of technology companies across AI, fintech, and 
emerging sectors, DIFC offers tailored licences, direct 
access to regional and global markets, and a regulatory 
environment designed for fast-moving innovation. Its AI 
Licence is a flagship instrument that provides AI startups 
with a legal presence, co-working space, fast-track visa 
access, and access to the Ignyte platform for capital, 
mentorship, and partnerships. DIFC also anchors the Dubai AI 
Campus, the largest AI cluster in the Middle East, which 
combines research facilities, accelerator programs, and 
real-world testbeds across sectors ranging from telecommu-
nications to space technology. 

But visas and tax benefits mainly help people arrive, not 
stay. Leading countries now focus on integration and 
empowerment, especially for younger talent. Sashwat 
Pandey, Founder of Young Sapiens Network, admits that 
achieving meaningful youth influence, rather than just 
symbolic “youth-washing”, requires concrete institutional 
steps. Youth must be treated as rights-holders in sustain-
ability processes, not just as advocates. Instead of viewing 
young people only as employees or founders, many 
countries create “real seats” for them in government, 
public-sector AI projects, and national innovation agendas. 
Rao Wei, Deputy Secretary-General of Shanghai Climate 
Week, admitted that beyond a learning subject, AI is more 
of an empowering tool to promote more youth climate 
actions and leadership achievements. The UAE provides 
structured roles for young people in policy discussions 
through the Ministry of State for Artificial Intelligence, Youth 
Councils, and Future Councils. Public-sector AI deployments 
in smart government, energy systems, urban planning, and 
digital infrastructure are used as practical training environ-
ments where young people learn how technology operates 
within real institutional and regulatory constraints.

Education and early leadership platforms reinforce this 
pipeline. In Singapore and several European countries, AI 
education is linked to public problem-solving rather than 
technical training alone. Schools and universities support 
AI invention programs, applied research challenges, youth 
policy labs, Youth Delegate Programs, and model parlia-
ment and model United Nations platforms. These 
initiatives expose students early to how AI interacts with 
regulation, ethics, and public value.

Entrepreneurship policy reflects the same logic. In the 
United Kingdom, Portugal, and many other countries, 
regulatory sandboxes, public procurement pilots, and 
early-stage funding allow young founders to experiment 
without requiring long track records or senior credentials. 
These systems accept iteration and failure as part of 
learning. Rather than waiting for young people to become 
fully established, these countries allow them to build, test, 
and learn within the national innovation system. Ahmad Ali 
Alwan, Chief Executive Officer of Hub71, mentioned Hub71’s 
mandate to attract startups and young people from 
around the world and build a diverse community that 
works together towards a shared purpose.

Immigration and tax policy function as enablers. Long-term 
advantage depends on whether countries give young people 
real roles, institutional platforms, and clear pathways to 
leadership. The countries that perform best are those that 
allow young talent not only to enter, but to stay, contribute, 
and shape public decisions in AI and sustainability.

Overall, the global competition for AI talent has become 
multi-dimensional. Successful jurisdictions no longer rely 
on a single policy lever, but combine flexible visas, 
attractive living and working conditions, targeted tax 
incentives, and credible innovation ecosystems. The 
lesson for policymakers is clear: attracting AI talent today 
means offering not just permission to stay, but a coherent 
environment in which individuals and small teams can 
build, experiment, and scale across borders.

AI will not eliminate jobs; instead, AI-enabled operating 
models will generate more employment to meet rising 
global energy needs.

Hon. Warwick Smith AO
Former Federal Government Minister, Australia

Source: Columbia SIPA

Columbia University’s School of International and Public 
Affairs (SIPA) has long been recognized as a global leader in 
climate, energy, and sustainability studies. This leadership is 
reflected institutionally through the school’s Climate, Energy, 
and Environment (CEE) concentration, one of the most 
comprehensive climate-policy training programs among 
international affairs schools, and through SIPA’s close 
integration with the Center on Global Energy Policy (CGEP) – 
a leading global think tank whose research regularly called 
upon to provide policymakers and global business leaders 
with the insights they need to make change happen. The 
Climate & Sustainability Alumni Network comprises over 
4,000 climate, environmental and sustainability professionals 
worldwide. It includes graduates of the Climate School as well 
as its partner programs, which include degrees offered and 
conferred by Columbia College, School of General Studies, 
the School of International and Public Affairs, and the School 
of Professional Studies, as well as the Graduate School of 
Arts and Sciences. 

Recent assessments, including the Innovation for Cool Earth 
Forum (ICEF) Artificial Intelligence for Climate Change 
Mitigation Roadmap reports, led by Professor Dr. David 
Sandalow, highlight the transformative potential of AI in global 

mitigation efforts. According to report, although the 
emissions generated by training and using AI currently 
account for less than 1% of global emissions, future growth is 
uncertain due to the rapidly increasing demand for data 
centers. The report also points out that the core bottleneck 
in realizing AI’s climate potential is the lack of data and talent, 
and emphasizes that establishing trustworthy AI, expanding 
open data, developing open-source foundation models, and 
ensuring the widespread deployment of AI in emission 
monitoring, extreme weather forecasting, and materials 
innovation will have a potential “order of magnitude” impact 
on global climate mitigation. 

As a concrete institutional example of how AI research can be 
integrated into climate and public policy education, Columbia 
SIPA has taken significant steps to embed AI into its 
academic offerings. The school now provides 13 AI-related 
courses that span ethics, digital content provenance in the 
age of generative AI, and the application of AI to urban 
governance and conflict prevention. These offerings reflect 
SIPA’s recognition that AI will be central to future policy work 
and ensure that graduates entering government, nonprofits, 
or industry will be well equipped to operate at the intersec-
tion of AI technology and public policy.   

Complementing coursework, initiatives such as AI and 
Development further integrate real-world applications, 
exploring how AI can better serve low-income countries by 
building on existing digital infrastructure and promoting the 
development of more useful, robust, and socially aligned 
algorithms. Through this combination of research, education, 
and practice, SIPA is building a comprehensive model for 
educating the next generation of policymakers equipped to 
govern and deploy AI for global climate mitigation. 

CASE STUDY 8 Integrating AI into Climate Mitigation Research, Policy, and Education

SIPA is committed to educating the next generation of 
policymakers to help them shape and govern AI tools for 
climate change mitigation.

Dr. David Sandalow
Co-Director of the Energy and Environment Concentration, 
School of International and Public Affairs at Columbia University
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AI in Future: From Science to Art 

Advancing AI does not mean everyone needs to become 
an AI engineer, nor does it mean AI can replace every-
thing.  As AI takes over computation, optimization, and 
repetitive work, the value of human contribution 
becomes more focused, not less. What matters most for 
a sustainable future are the capabilities AI cannot 
replace: creativity, ethical judgment, empathy, and the 
ability to create meaning. 

AI’s role is to improve efficiency, not to define human 
purpose. Automating routine tasks frees people to 
spend more time on design, education, storytelling, and 
social connection. A human-centered AI future is built 
on a clear division of labor: machines handle what can be 
optimized; humans remain responsible for intent, values, 
and direction.

Architecture and urban design illustrate this shift clearly. 
AI can process data-heavy analysis and technical 
constraints at speed, allowing creativity and human 
experience to move back to the center of design. As 
Ariane Dienstag, General Secretary of the Council on Tall 
Buildings and Urban Habitat (CTBUH) French Chapter, 
notes, AI compresses months of engineering work into 
hours, enabling professionals to focus more directly on 
environmental responsibility and human well-being.

As planning and design processes accelerate, the role of 
architects and planners becomes sharper rather than 
weaker. When measurable tasks are automated, 
human judgment shifts to what cannot be optimized: 
spatial quality, cultural context, and lived experience. 
In practice, AI reduces technical overhead and 
expands time for exploration, dialogue, and compo-
sition, supporting more diverse, human-centered 
outcomes rather than uniform or automated ones.

Artificial intelligence is not our master, but a tool for humans 
to improve people’s lives – happier, healthier, better educat-
ed, with more jobs and more fun.

Erik Solheim
Former Under-Secretary-General, United Nations

Source: The Joint Academy on Future Humanity

CASE STUDY 9 A New Model for AI Talent Development

How can we preserve students’ imagination? There is, 
in truth, no fixed paradigm to follow. What we can do is 
inspire them to gaze at the stars and dare to envision 
the seemingly impossible. The Academy aims to inspire 
young minds from around the world, inviting them to 
envision the future at the crossroads of science and 
the humanities. Here, bold and seemingly improbable 
ideas can evolve into transformative works capable of 
reshaping our world and steering the course of 
tomorrow, thereby advancing our era and pioneering 
future development.

Dr. Shi Yigong
President, Westlake University

Established on June 28, 2025, the Joint Academy on Future 
Humanity, co-founded by Renmin University of China and 
Westlake University, represents China’s first high-level 
interdisciplinary platform dedicated to the study of “Future 
Humanity.” From its inception, the Academy has been 
designed as a talent-first institution, centered on cultivating 
the next generation of AI researchers, thinkers, and innova-
tors through a youth-driven, full-cycle development model.

At the idea formation stage, the Academy anchors talent 
development in long-horizon questions shaped by artificial 
intelligence. It has released the Top Ten Topics on Future 
Humanity, spanning themes such as human evolution, 
cognition, values, governance, civilization, and security in 
the AI era. Building on this framework, the Academy 
launched the Future Humanity Vision Collection Project, 
inviting young people worldwide to contribute forward-looking 
ideas, and is organizing the Global Conference on Future 
Humanity under the theme “AI and the Future of Humanity.” 
These initiatives position young researchers not as passive 
learners, but as agenda-setters in global AI discourse.

At the research and incubation stage, the Academy 
operates a project-based Young Researcher Program that 
selects outstanding scholars under the age of 35 and 
provides them with funding, compute resources, and 
institutional support to pursue frontier AI-related research 
aligned with the Ten Topics. To strengthen incentives and 
intellectual property protection, the Academy has devel-
oped a blockchain-based Future Humanity Research 
Platform, which assigns each research output a unique 
cryptographic identity. This system enables verifiable 
authorship, digital publishing, and international recognition, 
while lowering barriers for early-career researchers to 
participate in global knowledge production. The Academy is 
also preparing to launch Future Humanity Studies, the 
world’s first English-language academic journal fully 
initiated and led by students, further reinforcing youth 
leadership in AI scholarship.

At the application and translation stage, the Academy 
supports the transformation of research into practice 
through the “Future Engine · Futurengent Smart Studio”, 
which incubates AI applications across domains such as 
information retrieval, music, archaeology, and social 
platforms. Complementary platforms – including the 
“Future Dialogue Hall” and the “Voices of Tomorrow Youth 
Exchange Program” – extend talent development beyond 
academia into public engagement and global collaboration.

Together, these initiatives form an integrated pipeline for 
AI talent development, spanning idea generation, research 
incubation, and real-world application. The Academy’s 
model – combining youth leadership, interdisciplinary 
inquiry, and technological infrastructure – offers a 
replicable approach to cultivating AI talent oriented 
toward long-term societal and civilizational challenges.
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Open & Equitable AI for All

Data Asset in the Open-Source Era
Equitable AI Access for the Global South

AI is not the desired result; it is the enabler. Developed thoughtfully, it can become shared infrastructure — scalable for 
institutions and transformative for people.

H.E. Professor Dr. M. Iqbal Chaudhary
Coordinator-General, OIC-COMSTECH

As AI systems rely increasingly on large volumes of data, 
openness brings both clear benefits and growing risks. 
Shared datasets can improve model quality and widen 
participation, but poorly governed data use can erode 
privacy, security, and public trust. Unlike software code, 
data is rarely neutral: it is contextual, often sensitive, and 
directly linked to people, communities, and critical 
infrastructure. As Alexandre Borde, Member of the CDM 
Registration and Issuance Team at the UNFCCC, notes, data 
was already an asset two centuries ago; what has changed 
in the AI era is its centrality, as advanced systems depend 
on large and diverse datasets, making access to informa-
tion a decisive factor in who can innovate and participate.

Existing technical tools for data governance are insufficient 
to address the challenges posed by modern AI and 
large-scale data use. Commercial data governance 
platforms, while more comprehensive in functionality, tend 
to be expensive, lack standardized archetypes for diverse 
contexts, and require significant expertise and resources 
to implement, making them inaccessible for many public 
institutions and smaller organizations. Government-provid-
ed tools and frameworks often face another limitation: 

they are high-level and theoretical, lacking clear operational 
guidance and practical mechanisms for institutions to manage 
data governance effectively in real-world settings. AI systems 
further strain these weak frameworks by learning patterns 
without reproducing the data and by generating outputs that 
are legally distinct yet functionally equivalent to the original 
material. As a result, existing governance approaches fail to 
meaningfully constrain misuse or ensure equitable control 
over data in contexts where it matters most.

In the Global South, the absence of well-designed open 
data-sharing frameworks creates a real risk that data, 
which could otherwise be used to address climate change 
and improve public welfare, becomes privatized by a small 
number of commercial actors. As Amandine Hardowar de 
Rosnay, Head of Sustainability & Inclusive Growth at 
Business Mauritius, has noted, this imbalance is particularly 
visible in developing and small-island contexts. Locally 
generated data is critical for climate risk analysis and 
sustainability planning, yet access to such data and the 
dissemination of resulting analyses are often structurally 
concentrated within a small set of institutions. In many 
small island states, governments are the primary – or 
sometimes the only – actors able to commission climate 
and coastal risk studies, which can unintentionally limit 
wider circulation of data and findings across researchers, 
practitioners, civil society, and the private sector. By 
contrast, in larger countries, climate and coastal science is 
produced by and for a much broader range of institutions, 
enabling parallel research efforts, stronger academic 
ecosystems, and more frequent publication in open 
scientific literature. While this concentration of data 
access and knowledge predates artificial intelligence, the 
rapid expansion of data-intensive AI systems risks 
reinforcing these asymmetries, further constraining 
countries’ ability to derive broad-based value from their 
own data resources unless data governance and access 
are explicitly addressed.

Zoe Zhang, Secretary General of Sino-International 
Entrepreneurs Federation, believes leading AI from China 
and around the world should serve as a fair bridge that 
empowers the Global South to tackle climate challenges. 
This means not only sharing technology, but also working 
together to build local innovation capacity, combining 
intelligent algorithms with local ecological knowledge to 
shape an inclusive, resilient, and sustainable future. As 
such, technology dividends should not be captured by a 
small group of countries. For the Global South, artificial 
intelligence must be shaped through inclusive coopera-
tion that turns technological progress into shared 
development, not deeper fragmentation. The goal is not 
simple diffusion, but transformation – using AI to narrow 
the North-South gap and enable green, leapfrog growth. 
Seema A. Khan, Senior Advisor of OIC-COMSTECH, urges 
that over the next decade, we must construct AI 
systems that are interoperable, ethical, and equitable, so 
that governments and citizens alike can depend on them.

In practice, inclusivity depends on addressing structural 
constraints. Many developing countries face chronic 
shortages of computing power and network capacity. 
This makes adaptive approaches – such as lightweight 
models, distributed computing, and shared resource 
mechanisms – essential to closing the “compute divide.” 
Regional cooperation plays a critical role. In parts of 
Africa, community-based data cooperatives are pooling 
agricultural and health data to support climate resilience 
while retaining local ownership. This results in a shortage 
of supporting capital. In the second quarter of 2024, 
African AI startups secured just $4 million across five 
deals, less than 1% of worldwide investment, with $23.2 
billion raised globally. 

According to Chantele Carrington, Chief Executive 
Officer of Invest Africa, AI-enabled systems can improve 
transparency, efficiency, and trust across global supply 
chains, particularly for emerging economies that remain 
underrepresented in AI investment. Inclusive AI 

development requires coordinated investment, institutional 
capacity, and alignment with how infrastructure is actually 
planned and delivered. For example, Shi Hao Zijdemans, 
Digital & Technology Specialist at Asian Infrastructure 
Investment Bank, explains that rather than a single “AI 
moment,” AIIB’s experience is that value can emerge 
whenever AI is embedded across the infrastructure lifecycle 
– from project design and risk assessment, to construction 
oversight, operations, and long-term maintenance. Applied 
this way, AI supports more reliable services, better asset 
performance, and more informed decision-making across all 
infrastructure sectors. When paired with open collaboration 
and trust-based governance frameworks, these technolo-
gies can meaningfully contribute to climate resilience, sustain-
able trade, and inclusive growth across the Global South.

  

Equitable access to AI is now a practical issue, not a theory. 
Across parts of the Global South, local governments are 
already deploying AI in practical, resource-constrained 
settings, leveraging modest infrastructure, open data flows, 
and community participation to address mobility, disaster 
risk, public health, and environmental degradation. These 
experiences offer concrete insight into how inclusive AI can 
be designed from the ground up, ensuring that technologi-
cal capability translates into everyday public value rather 
than remaining concentrated in a few institutions. 91

These dynamics show that openness in the AI era cannot be unconditional. Cooperation remains necessary, but it must 
come with clear limits. As H.E. Corinne Lepage, former French Minister of the Environment & former Member of the Europe-
an Parliament, emphasized “cooperate, yes; depend, no”, stating open collaboration should strengthen shared capacity 
without locking countries into long-term dependence on external data, models, or infrastructure. This means moving 
beyond informal norms toward practical governance tools: clear usage rights, traceable data provenance, transparent 
disclosures of model training, and shared mechanisms to signal permitted uses across jurisdictions. The aim is not to 
reduce openness, but to make it sustainable, so data and AI systems can support innovation while preserving trust and 
strategic autonomy.

We call for and commit to supporting open innovation 
partnerships in AI and climate technology, to build fairer 
technology transfer and financing mechanisms and back 
AI-driven projects that bring clean energy, resilient agricul-
ture, and green livelihoods to Global South communities. 
This support is not a one-way transfer of technology. It is a 
partnership that builds long-term local capacity and 
strengthens local innovation ecosystems.

Tony Dong
Chief Representative, Sino-International Entrepreneurs Federation

We still need to work harder collectively to give access to 
regions where networking opportunities aren't available.

Ahmad Al Ghardaqa
Lead Negotiator and Senior Legal Advisor, UAE National Negotiation Team
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Inclusive AI for Agricultural SMEs

Small and medium-sized enterprises (SMEs) in agricul-
ture are among the most climate-exposed and 
economically fragile actors in the global economy. 
Acute physical risks – floods, droughts, heatwaves, and 
pest outbreaks – directly undermine yields and income, 
while transition policies such as fuel switching, electrifi-
cation mandates, and tighter emission standards 
introduce additional compliance and capital pressures. 
As climate volatility intensifies, the central question is 
no longer whether AI can be applied to agriculture, but 
whether it can deliver tangible, distributable value to 
those least able to absorb climate and transition risks.

Paradoxically, agriculture remains one of the least 
digitized and least AI-adopting sectors. The McKinsey 
Global Institute consistently identifies food and 
agriculture as lagging across all dimensions of digitiza-
tion, reflecting fragmented land ownership, highly 
localized practices, limited rural connectivity, and 
persistent skills gaps. Yet this structural lag also signals 
latent potential. The global digital farming market was 
valued at approximately USD 24.9 billion in 2023 and is 
projected to grow at around 16.3% annually through 
2030, as infrastructure constraints ease, upfront costs 
decline, and technical barriers gradually diminish.

In the near term, the most significant value of AI for 
agricultural SMEs lies not in abstract optimization but in 
risk anticipation, loss avoidance, and income stabiliza-
tion. AI-enhanced weather and disaster forecasting 
already demonstrates measurable social and econom-
ic benefits. Systems such as Google Flood Hub 
combine machine-learning-based hydrological 
forecasting with inundation modelling to predict flood 
extent and depth up to seven days in advance. As of 
its latest update, the platform covers more than 80 
countries and reaches roughly 460 million people, 
providing critical lead time for evacuation, crop 
protection, and emergency response, and materially 
reducing losses from extreme flooding.

Beyond early warning, AI increasingly supports 
decision-critical functions that directly affect resilience 
and profitability. By integrating satellite imagery, soil 
data, and localized weather forecasts, machine-learning 
models can identify water stress, nutrient deficiencies, 
and heat damage earlier than visual inspection, enabling 
timely intervention before irreversible yield loss. 
Precision input management further allows water, 
fertilizers, and pesticides to be applied more selectively, 
lowering costs while reducing runoff and soil degrada-
tion, an increasingly important advantage as input 
prices rise and environmental regulations tighten. 
Low-cost computer vision tools, often deployed via 
smartphones, help detect pests and diseases at early 
stages, narrowing response windows and reducing the 
need for blanket chemical spraying, which dispropor-
tionately burdens small producers. AI-driven market 
and price forecasting also helps SMEs decide when and 
where to sell, reducing exposure to price volatility and 
information asymmetries that remain a chronic source 
of income instability in fragmented local markets.
 
For agricultural SMEs, AI does not replace agronomic 
knowledge or local experience. Its primary function is 
to compress uncertainty into actionable signals – 

translating climate variability, market opacity, and 
policy complexity into decisions that can be made 
with limited capital, limited time, and limited technical 
capacity. In this sense, AI operates less as an efficien-
cy multiplier for already industrialized agriculture and 
more as a risk-buffering infrastructure for producers 
operating at the margins of climate and economic 
resilience.

We want to be a leader of AI adoption in West Africa. The 
first thing is to use this artificial intelligence to increase 
financial inclusion for our population by developing afford-
able AI-enhanced banking products working closely with our 
national bank and the foreign banks.

H.E. Lalsaga Sayouba
Advisor to the President of Burkina Faso

Source: Pasig City, Quezon City, and Cauayan City, Phillippine

Across several Philippine cities, artificial intelligence is being deployed not as an abstract “smart city” upgrade, but as 
public infrastructure designed around everyday needs – how people move, how they stay safe during disasters, how 
they protect their health, and how vulnerable groups are included rather than displaced.

In daily mobility, AI systems directly affect how residents experience the city. By combining traffic sensors, public 
transport data, and citizen reports, city governments are able to adjust traffic management in real time. For commuters 
in Pasig City, this means shorter travel times, safer intersections, and more predictable public transport. Importantly, 
residents are not passive data subjects: motorists and passengers actively report accidents and congestion through 
mobile platforms, ensuring that planning reflects lived experience, not just technical models.

AI is also used to enhance communities from clean energy 
adoption and climate risk resilience. In Quezon City, solar 
adoption is mapped across the city to identify potential 
destinations for upcoming solar installations. Also, the I-RISE UP 
system monitors flood levels and air quality, triggers disaster 
risk reduction efforts ahead of time, and nurtures climate 
change awareness. 

In public health, AI helps communities act earlier, not later. In 
Cauayan City, Isabela, AI-supported monitoring identifies rising 
mosquito infestation before outbreaks spread, triggering 
sanitation alerts and community mobilization. Health officers 
remain in the loop, using AI as decision support rather than a 
substitute for human judgment. Across these cases, AI reduces 
uncertainty for people with limited time, income, and resilience. 
By converting data into timely, understandable action, these 
city-level deployments show how equitable AI in the Global 
South can improve daily life, strengthen trust in public institu-
tions, and ensure that technological progress is felt first by 
those who need it most.

CASE STUDY 10 Inclusive AI Deployment in the Philippines

Digitalization means automating or digitizing 
existing services. AI, on the other hand, involves 
machine-driven analysis and decision-making 
without human input. Many cities, even globally, 
are still at the digitalization stage where true AI 
adoption remains rare.

Michael Victor N. Alimurung
City Administrator, Quezon City
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Governance of AI Risks Trust, Accountability, and Public Participation

Every Transformation Was Once Feared 

Throughout modern history, every 
transformative technology has faced 
resistance before becoming an engine 
of social and economic progress. The 
steam engine was accused of 
destroying labor and destabilizing 
cities; electricity was feared for its 
safety risks and social disruption; 
railways were said to collapse space 
and time beyond human control; the 
internet was once viewed as a threat 
to sovereignty, morality, and social 
order. In each case, early anxieties 
were not unfounded, yet history 
shows that societies advanced not by 
rejecting these tools, but by learning 
how to govern, integrate, and adapt 
them. Artificial intelligence is following 
a similar path, raising legitimate 
concerns about employment, security, 
and inequality. But treating AI solely as 
a risk is a mistake that confuses 
uncertainty with danger, and disrup-
tion with decline. Like its predeces-
sors, AI is a continuation of long-term 
technological evolution.

Current regulatory approaches reflect 
different historical experiences and 
institutional priorities. The United 
States has largely favored an innova-
tion-first model, allowing AI develop-
ment to proceed rapidly with limited 
ex ante regulation, on the assumption 
that market competition and 
post-hoc oversight will correct 
failures. Europe has taken a more 
precautionary approach, emphasizing 
rights, safety, and accountability 

through comprehensive frameworks 
such as the AI Act. China, meanwhile, 
has pursued a governance model 
focused on systemic stability, social 
impact, and alignment with national 
development objectives. Each 
approach responds to real risks and 
legitimate societal concerns.

Crucially, governance should be 
understood not as resistance, but as 
the mechanism through which society 
learns to live with AI. Just as labor 
laws and safety standards enabled 
industrialization, AI governance should 
focus on mitigating risks and ensuring 
accountability while preserving space 
for experimentation. The goal is not to 
slow progress, but to channel it 
toward socially beneficial, economi-
cally inclusive, and sustainable 
outcomes. Embracing AI means 
recognizing and managing its risks, not 
being paralyzed by fear. Progress has 
always depended on moving beyond 
initial anxiety toward responsible 
adoption. The task of governance is 
not to stop this transformation, but to 
guide it, ensuring society moves 
forward.

Capacity training for the private 
sector on new regulations and 
climate compliance is essential, 
with public-private dialogue 
important for addressing 
implementation gaps. Interna-
tional partners such as develop-
ment banks should also offer 
tailored training aligned with 
national development levels 
rather than a one-size-fits-all 
model. 

Dr. Kaewkamol Karen 
Pitakdumrongkit
Interim Secretary General, 
PECC International Secretariat

AI risk governance is often described through four 
connected themes: trust, transparency, fairness, and 
accountability. Imad Lahad, Global Chair of AI and 
Intelligence at APCO, emphasizes that trust and 
transparency are foundational. Trust cannot exist 
without transparency. Public trust holds the AI ecosys-
tem together. Yukio Sakaguchi, President of the Clean 
Energy Research Lab, observes that AI is often promot-
ed as a “miracle cure,” while the real constraints lie in 
infrastructure readiness and regulatory capacity. 

Many AI systems still operate as black boxes, with 
opaque model designs, undisclosed data sources, and 
decision logic that the public cannot review or under-
stand. This is especially concerning in climate mitigation 
and adaptation, where AI is increasingly used for 
infrastructure planning, land-use decisions, energy 
system design, and disaster response.

Contributors of this report most often rate the 
following risks as “very likely” or “likely”: accountability 
gaps, algorithmic bias, and over-trust in AI decisions. 
This suggests a shared view that AI will be deployed in 
critical systems faster than governance can keep up. 
They expect AI to be used in energy, transport, and 
disaster management within the next 5 to 10 years, 
even if it is not fully reliable. This raises concern that 

systems will depend on AI too early, driven by urgency 
rather than readiness. Great concern about bias and 
labor displacement shows that many see AI’s social 
effects as broad, built-in consequences of widespread 
adoption. Worry about AI-driven decision-making 
dominating also points to risks of weaker public debate 
and reduced political accountability in long-term crisis 
governance.

Very Likely Likely Neutral/Not Sure Unlikely Very Unlikely

Al may strike the labor market and cause 
historic unemployment

Within 5-10 years, Al may inevitably come to 
control critical energy and transportation 

infrastructure, even if it is not yet fully reliable 

Use of immature Al in policy-urgent domains 
(e.g., disaster control or forest monitoring)

may be tolerated

Lack of accountability when Al fails in critical 
contexts (e.g., driving, industry)

Inevitable data and algorithmic bias may 
amplify social inequalities

Decision-makers may rely more on Al-opti-
mized decisions and reduce room for public 

debate and interest alignment, weakening 
societal resilience to crises in the long term 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 4.4a Most Concerned AI Risks

Source: ClimateTech In Focus Responding Contributors
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Hold Hands, Not Build Fences

Education and early leadership platforms reinforce this 
pipeline. In Singapore and several European countries, AI 
education is linked to public problem-solving rather than 
technical training alone. Schools and universities support 
AI invention programs, applied research challenges, youth 
policy labs, Youth Delegate Programs, and model parlia-
ment and model United Nations platforms. These 
initiatives expose students early to how AI interacts with 
regulation, ethics, and public value.

Entrepreneurship policy reflects the same logic. In the 
United Kingdom, Portugal, and many other countries, 
regulatory sandboxes, public procurement pilots, and 
early-stage funding allow young founders to experiment 
without requiring long track records or senior credentials. 
These systems accept iteration and failure as part of 
learning. Rather than waiting for young people to become 
fully established, these countries allow them to build, test, 
and learn within the national innovation system. Ahmad Ali 
Alwan, Chief Executive Officer of Hub71, mentioned Hub71’s 
mandate to attract startups and young people from 
around the world and build a diverse community that 
works together towards a shared purpose.

Immigration and tax policy function as enablers. Long-term 
advantage depends on whether countries give young people 
real roles, institutional platforms, and clear pathways to 
leadership. The countries that perform best are those that 
allow young talent not only to enter, but to stay, contribute, 
and shape public decisions in AI and sustainability.

Overall, the global competition for AI talent has become 
multi-dimensional. Successful jurisdictions no longer rely 
on a single policy lever, but combine flexible visas, 
attractive living and working conditions, targeted tax 
incentives, and credible innovation ecosystems. The 
lesson for policymakers is clear: attracting AI talent today 
means offering not just permission to stay, but a coherent 
environment in which individuals and small teams can 
build, experiment, and scale across borders.

The greatest enabler for addressing any global challenge 
that we face, is to increase trust between us – that we are 
proposing solutions that benefit everyone, not just 
ourselves.

Seema A. Khan
Senior Advisor, OIC-COMSTECH

Ravenna Chen, Chief Executive Officer of Intrinsic SEA, 
points out that technology can cross borders easily, 
but trust and institutional recognition must be built 
intentionally. When designed responsibly, AI can 
strengthen public participation. AI-driven personaliza-
tion, such as advice on mobility choices, household 
energy use, or agricultural practices, can turn millions of 
daily decisions into real emissions cuts. With open 
models, explainability tools, and user-friendly interfac-
es, people can see how their choices affect climate 
outcomes, thereby strengthening trust and civic 
engagement.

The risks are also serious. When AI outputs are present-
ed as purely technical results without explanation, the 
ability to question decisions, or transparency, they can 
limit democratic discussion and scientific debate. This 
is most dangerous in climate decisions that affect 
livelihoods and social stability, such as hydropower 
development, coastal protection, land relocation, or 
food security. 47% of this report’s contributing survey 
respondents agree that when communities are told 
that “the AI model has determined” an outcome, 

without access to assumptions, uncertainty, or trade-offs, 
public consent is replaced by top-down decision-making. 
This can shift power from public institutions to computa-
tional systems and exclude vulnerable groups whose lived 
experiences and local knowledge are poorly captured in 
the data.

Addressing this requires governance that builds transpar-
ency into AI systems from the start. Sonia Dunlop, Chief 
Executive Officer of the Global Solar Council, has noted 
that trust, cybersecurity, and policy coherence are 
essential conditions for safe deployment. This supports a 
risk-based regulatory approach where high-impact 
climate uses face stricter requirements for explainability, 
human oversight, and public accountability. Other 
measures include AI audits and certifications, public review 
or consultation for AI-backed policy decisions, and rules 
requiring that models used in public governance be 
auditable and understandable to non-experts. Transparen-
cy is not just a technical feature. It is required for 
legitimate, socially grounded climate governance.

As climate change intensifies pressures on societies, 
economies, and ecosystems, many see artificial 
intelligence as a useful tool for climate action, but it 
also introduces new risks and governance challenges. AI 
can improve climate models, strengthen early warning 
systems, optimize energy and resource use, and 
support decisions across complex systems. Ravenna 
Chen, Chief Executive Officer of Intrinsic SEA, notes 
that AI can make climate efforts smarter and even more 
collective by enabling coordination across actors, 
sectors, and geographies that would otherwise be 
difficult to manage.

AI is not a plug-and-play tool that works the same 
everywhere, and it brings real challenges, including data 
sovereignty and public infrastructure, safety risks in 
critical systems and disaster response, and equity 
concerns about who benefits and who pays the costs. 
These risks are why countries should cooperate instead 
of isolating themselves. Climate impacts cross borders, 
and the best way to improve data quality, reduce bias, 
strengthen accountability, and expand access is to share 
datasets, standards, tools, and operational lessons 
across countries. No single institution or country can do 
this alone. Imad Lahad, Global Chair of AI and Intelli-
gence at APCO, highlights that no single body can solve 
the climate challenge or govern AI independently. With 
trusted collaboration and open, interoperable 
approaches across governments, the private sector, 
civil society, and international organizations, including 
shared commitments to interoperable data, common 
ethical standards, transparent governance, and resilient 
digital infrastructure, AI can become safer, fairer, and 
more useful, especially for climate finance, infrastruc-
ture planning, and disaster response.

Global AI rules are still taking shape. Regulation often trails new technology, but governments are moving to catch 
up. The European Union is advancing its AI Act, the United States has released the NIST AI Risk Management Frame-
work, and China has issued interim measures for managing generative AI. In March 2024, the United Nations General 
Assembly adopted a resolution stressing the global need for “safe, secure, and trustworthy” AI. 103 Across the EU’s 
risk-based approach and the more flexible, sector-specific frameworks in the UK, Asia, the Middle East, and other 
regions, one point is clear: AI governance is becoming a basic expectation.

Meanwhile, effective AI governance cannot rely on formal regulation alone. In practice, shared norms, mutual trust, 
and operational understanding are often shaped through continuous dialogue and collaboration beyond statutory 
frameworks. In the context of climate action, where uncertainty, speed, and cross-border coordination are the norm, 
governance is shaped not only by rules but also by the quality of dialogue and cooperation among those applying AI 
in practice. 

Figure 4.4b International Governance Initiatives on AI
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Source: London Climate Action Week

CASE STUDY 11 Convening Without Borders in AI and Climate Innovation

Events like climate weeks can help define and coordi-
nate mission-driven AI, ensuring that AI tools move 
from conceptual discussions toward practical use that 
supports local decision-makers and smaller actors.

Nick Mabey
Chief Executive Officer, E3G

Technology and innovation were central to London Climate Action Week (LCAW), underscoring the Capital’s 
position as a global hub for clean tech and highlighting the rapidly growing role of AI in climate solutions.
In 2025, LCAW’s dedicated cleantech cluster was led by Undaunted, a UK and global hub for green entrepre-
neurship, London & Partners, Sustainable Ventures, and the Blue Earth Forum, which connects investors with 
high-growth, solutions-driven businesses. But the role of AI extended well beyond the cleantech cluster. 
Conversations about its impact, risks, and practical uses ran across the entire programme, spanning food 
systems, nature, energy, resilience, and green finance.

This year’s LCAW featured events from world-leading tech giants such as Google, alongside start-ups 
developing emerging AI applications for climate tech and the financial institutions backing them. Barclays, for 
example, convened a discussion on AI’s investment potential in the energy sector. Academia was also strongly 
represented, with the London School of Economics and Kingston University London hosting sessions on the 
social, economic, and governance dimensions of AI in climate action.

One highlight of the week was the 2025 Responsible AI Impact Awards, featuring speakers including BNP 
Paribas, the United Nations, and Deloitte, reflecting growing momentum behind ethical and accountable AI 
deployment.

Across the week, discussions explored the expand-
ing role of AI data centres in supporting the clean 
energy transition; AI’s potential to accelerate 
climate innovation and strengthen resilience and 
conservation efforts; the importance of robust 
technology governance; advances in climate-mod-
elling tools; and practical applications ranging from 
energy-efficiency optimization to precision 
agriculture.

Together, these conversations demonstrated how 
deeply AI is shaping the next generation of climate 
solutions, and how London continues to convene 
the people and ideas driving that transformation.

Contributors to this report identify that AI governance for climate uses should follow a few guiding principles:

These realities explain why “holding hands” matters. The goal is not a borderless AI market. It is border-aware 
collaboration: open where openness supports truth and public value, and protected where protection safeguards 
rights, safety, and legitimacy.

In practice, strong international climate AI partnerships will look less like technology exports and more like shared 
infrastructure and shared assurance. That means trusted data, comparable evaluation, sustained capacity, and 
governance that can respond when issues arise. This is how climate AI can support collective action rather than 
create new divisions.

Focus on proven public value, not just technical performance. Cross-border AI cooperation should be grounded 
on clear benefits for people and balanced against risk. For example, disaster warning systems can save lives 
quickly and deliver direct value relative to the risks they entail, making them a common priority for global AI use 
cases in the climate context.

Start by sharing experience, not raw data. Data sharing is sensitive, but countries can still exchange scientific 
and operational lessons through open channels.

Classify data and apply tiered access. Keep information open to improve verification and learning, such as data, 
benchmarks, and methods. Apply stronger controls when systems affect critical infrastructure or rights-sensitive 
decisions, such as dispatch, evacuation, credit, and insurance. There should always be a balanced choice 
between “open everything” and “build fences.”

Tolerate reasonable uncertainty and risk. AI models exhibit errors and bias, and the future development pathway 
of AI remains uncertain. Governance should not assume uncertainty and risk must be eliminated. With reason-
able safeguards in place, some mistakes are acceptable, and systems should be designed to tolerate error.

Treat people as AI’s co-owners, not just users. Governments should prevent AI from harming society, but people 
also need the skills to use AI to protect themselves. Government oversight should have limits, rather than trying 
to control everything in the name of protection.
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CONCLUSION: 
WHAT’S NEXT?

Zoe Zhang, Secretary General of Sino-International 
Entrepreneurs Federation, believes leading AI from China 
and around the world should serve as a fair bridge that 
empowers the Global South to tackle climate challenges. 
This means not only sharing technology, but also working 
together to build local innovation capacity, combining 
intelligent algorithms with local ecological knowledge to 
shape an inclusive, resilient, and sustainable future. As 
such, technology dividends should not be captured by a 
small group of countries. For the Global South, artificial 
intelligence must be shaped through inclusive coopera-
tion that turns technological progress into shared 
development, not deeper fragmentation. The goal is not 
simple diffusion, but transformation – using AI to narrow 
the North-South gap and enable green, leapfrog growth. 
Seema A. Khan, Senior Advisor of OIC-COMSTECH, urges 
that over the next decade, we must construct AI 
systems that are interoperable, ethical, and equitable, so 
that governments and citizens alike can depend on them.

In practice, inclusivity depends on addressing structural 
constraints. Many developing countries face chronic 
shortages of computing power and network capacity. 
This makes adaptive approaches – such as lightweight 
models, distributed computing, and shared resource 
mechanisms – essential to closing the “compute divide.” 
Regional cooperation plays a critical role. In parts of 
Africa, community-based data cooperatives are pooling 
agricultural and health data to support climate resilience 
while retaining local ownership. This results in a shortage 
of supporting capital. In the second quarter of 2024, 
African AI startups secured just $4 million across five 
deals, less than 1% of worldwide investment, with $23.2 
billion raised globally. 

According to Chantele Carrington, Chief Executive 
Officer of Invest Africa, AI-enabled systems can improve 
transparency, efficiency, and trust across global supply 
chains, particularly for emerging economies that remain 
underrepresented in AI investment. Inclusive AI 

We are carrying out a vast, frightening experiment of 
changing every ecological condition, all at once, at a pace 
that far outstrips Nature’s ability to cope. As we work 
towards a zero-carbon future, we must work equally 
towards being Nature-positive.

His Majesty King Charles III
King of the United Kingdom

© Coexistence of City and Wilderness, Wei Feifan, Finalist of 2025 Climate and Sustainability Photography Awards
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For Governments, Regulators, 
and International Organizations
First, treat AI-enabled sustainability as a system-level challenge of decision delegation and institutional infrastructure: 
across energy, transportation, trade, and climate governance, impact depends on sustained deployment support, clear 
accountability, machine-interpretable rules, and data-verifiable enforcement rather than standalone technology promotion.

Second, align regulation, market design, and enforcement capacity with AI-enabled operational realities by scaling obliga-
tions with risk and impact, using tiered governance, sector-specific rules, and market mechanisms that support reliability, 
flexibility, transparency, and public legitimacy as automation accelerates decision speed.

Third, invest in long-term institutional capacity through talent ecosystems and data infrastructure: embedding AI into public 
services, infrastructure projects, and policy experimentation converts global talent into durable capability, while sensing 
systems, interoperable standards, and shared verification expand equitable participation, especially in the Global South.

Lastly, coordinate internationally through differentiated yet compatible pathways that respect sovereignty and asymme-
tries in data, computing, and institutional readiness, enabling cooperation without forcing uniform automation trajectories 
or dependencies.

For Enterprises, Platforms, 
and Infrastructure Operators
First, move sustainability from compliance toward operational intelligence by deploying AI where system value is highest – 
advisory and bounded orchestration roles in energy, manufacturing, logistics, and mobility that improve dispatch, optimiza-
tion, maintenance, routing, and safety without displacing accountability.

Second, exercise awareness of the appropriate automation level for Governor, Orchestrator, Arbiter, Advisor, Interpreter, 
and Observer, based not only on problem definition and technological capabilities but also on risk tolerance and responsi-
bility. Define ownership and operational metrics to complement workflows for use cases and enterprises and translate 
innovation into reliable outcomes.

Third, invest in data foundations, IT-OT integration, interpretability, and control architectures – supported by digital twins, 
simulation, and stress testing – so automation strengthens resilience, cybersecurity, and continuity as systems become 
more interconnected.

Lastly, embed AI end-to-end as a production capability rather than isolated pilots, allowing efficiency, decarbonization, 
safety, and workforce transformation to reinforce one another over time.

For Financial Institutions, Investors, 
and Trade & Compliance Ecosystems
First, integrate AI and climate intelligence directly into core decision chains – credit, underwriting, provisioning, valuation, 
stress testing, certification, and market access – so sustainability shifts from disclosure and paperwork to auditable, 
decision-grade execution.

Second, treat climate and compliance intelligence as shared infrastructure by prioritizing transparency, uncertainty 
management, provenance, and governance over algorithmic novelty to ensure trust across finance, trade, and regulatory 
systems.

Third, apply multimodal AI – satellite, operational telemetry, laboratory data, and documents – to align claimed performance 
with observed reality, strengthening discipline, comparability, and confidence across global value chains.

Lastly, leverage AI and data transparency in innovative green loans/bonds and investment structures to direct capital to 
high-integrity Global South opportunities, such as credible carbon credit and renewable energy transition projects, thereby 
accelerating low-carbon growth.

For Education Institutions, NPOs, 
and Talent Ecosystems
First, shift from awareness-raising toward decision-literacy capability building, helping learners and institutions understand 
where AI should advise, orchestrate, or act – and where human judgment must remain primary.

Second, redesign education around systems literacy by teaching AI with sustainability, integrating governance, data quality, 
uncertainty, ethics, and interdisciplinary application rather than narrow tool proficiency.

Third, leverage youth leadership on real public challenges and provide meaningful seats, resources, and opportunities for 
youth in government and enterprise on AI for Sustainability.

Lastly, ensure inclusion is structural through sustained investment in access, local context, gender balance, and participa-
tion from the Global South, so AI capacity does not reflect inequality but opportunity.

For SMEs, Startups, and Individuals
First, think slowly before moving swiftly. Take time to identify industry pain points. Maintain an agile, swift team focusing on 
minimally commercial viable products and scale the team in line with product growth. 

Second, design AI products with data security, explainability, and regulatory compliance embedded from the outset, 
enabling smoother expansion across markets governed by different AI and data protection regimes. 

Third, experiment rapidly while deliberately bounding risk, using AI to accelerate learning, deployment readiness, and 
market integration without amplifying downside exposure.

Lastly, recognize that human judgment, ethics, and responsibility remain central anchors in AI-enabled systems, defining 
boundaries, absorbing uncertainty, and sustaining social legitimacy.

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

9089



Institutions

Acknowledgement

Website: www.we-carbon.com

Website: https://www.sief.org

Sino-International Entrepreneurs Federation (SIEF) is a global, non-profit, non-partisan organization established in 
2008 by Rt. Hon. Gordon Brown, Jean-Pierre Raffarin, Hon. John Howard, and H.E. Long Yongtu. It is incorporated in Zurich 
and headquartered in Beijing at the Prince Palace, serving as a trusted facilitator connecting leading business leaders 
across industries, continents, and cultures. Over the past decades, it has helped public- and private-sector leaders 
achieve their goals by advising on strategy, policy, and delivery. 

Presenting Partner

Legal Advisor

Author

WeCarbon is a globally leading ClimateTech firm offering AI-powered sustainability solutions. Leveraging innovative 
technology and global thought leadership, it empowers industrial parks, testing & certification, shipping & logistics, and 
global trade to enhance operational efficiency, reduce carbon emissions, and accelerate green and AI transitions. Beyond 
technology, it also serves as a strategic bridge across continents, bringing world-class ClimateTech innovation, policy 
advisory, and sustainable infrastructure solutions to the Global South, enabling scalable climate and development 
outcomes.

The report is the result of an interdisciplinary team that combines expertise from academia, industry, finance, 
public policy and sustainability. This diverse group has provided comprehensive insights into the financial, 
educational, and talent development aspects of ClimateTech. The collaboration has delivered a thorough analysis 
and actionable recommendations, underscoring the importance of diverse perspectives in addressing climate 
change and sustainability challenges.

Knowledge Partner

Supporting Organization

Light & Bright

Website: www.shanghaiclimateweek.org.cn 

Shanghai Climate Week (SHCW) is a global non-profit platform for governments, businesses, academic institutes, and 
social institutions to communicate & collaborate on climate actions under the support of the UN & Chinese govern-
ments. It aims at “China Action, Asia Voice, Global Standard,” pushing social forces of engagement in China’s commit-
ment to carbon peaking and neutrality goals, amplifying Asia’s voice for green transformation, enhancing international 
communication & collaboration in response to climate change, and participating in design & implementation of interna-
tional standards.

Pacific Economic Cooperation Council (PECC) is an independent, regional mechanism with 23 member countries and 
2 institutional members that advances economic cooperation and market-driven integration. It has served as a regional 
forum for cooperation and policy coordination to promote economic development in the Asia-Pacific region since 1980. 
As APEC’s only non-government official observer, PECC provides information and analytical support to APEC ministerial 
meetings and working groups in facilitating private sector participation in the formal process.

Website: www.pecc.org 

The United Nations University (UNU) is a global think tank and postgraduate teaching organization within the United 
Nations System. UNU engages in policy-relevant research, capacity development, and knowledge dissemination in 
furtherance of the purposes and principles of the United Nations. The work of the UNU contributes to solving pressing 
global problems that are the concern of the United Nations and its Member States. 

Website: www.unu.edu

Chief Representative for Asia Pacific, Shanghai Climate 
Week & Chief Representative for Middle East & Africa, 
Sino-International Entrepreneurs Federation

Under-Secretary-General, United Nations & 
Rector, United Nations University

Director, APEC Business Advisory Council & 
Chairman, Pacific Economic Cooperation Council 
Philippine National Committee 

William Wang

Dr. Tshilidzi Marwala

Deputy Secretary General, Shanghai Climate Week & 
Founder and Executive President, WeCarbon

Remoca Shi

Founder and Chief Technology Officer, WeCarbon

Eric Ma

Business Manager for Middle East & Africa, 
Sino-International Entrepreneurs Federation

Amber Sun

Engagement Manager for Middle East & Africa, 
Sino-International Entrepreneurs Federation

Debra Jiang

Antonio Basilio

Aon

APCO

BlueOnion

Cauayan City

Chindata Group

CHINT Group

Cibola Partners

Columbia SIPA

E3G

Hub 71 

London Climate Action Week

Maersk

National Innovation Center par Excellence

New Energy Nexus 

OIC-COMSTECH

Pasig City

Plug and Play China

Quezon City

The Queen Elizabeth II Commonwealth Trust

Renmin University of China - 
Westlake University The Joint Academy on Future Humanity

SenseTime

SIEMENS

Tsinghua University

(Listed in alphabetical order)

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

9291



Contributor

The author team would like to thank the following experts from academia, industry, finance, public policy, and sustainabil-
ity sectors who contributed their insights to this publication through content inputs and strategic guidance:

Mohammed Usman Abdul-Razaq
Senior Vice President, African Finance Cooperation

Lloyd Alexander Adducul
Chief Research Officer of the Foreign Service Institute, 
Philippines Department of Foreign Affairs

Ahmad Al Ghardaqa
Lead Negotiator and Senior Legal Advisor, 
UAE National Negotiation Team

Razann Al Ghussein
Office of Development Affairs, UAE Presidential Court

Nabil Al-Khowaiter
Former Chief Executive Officer, Aramco Ventures

H.R.H. Prince Khalid bin Saud bin Khalid Turki Al Saud
General Advisor, Saudi Arabia General Authority of Meteorology and 
Environmental Protection

Michael Victor N. Alimurung
City Administrator, Quezon City

Butti Almheiri
Co-lead Adaptation Negotiator, UAE Climate Change Special Envoy

Sameer Al Shethri
Vice President, National Industrial Development Center

Ahmad Ali Alwan
Chief Executive Officer, Hub71

Muhammad Mustafa Amjad
Program Director, Renewable First

Felix Ayque
Co-founder and Chief Executive Officer, Komunidad

Michael Baldock
Chief of Staff, United Nations University

Stephen Ball
Chairman, The Queen Elizabeth II Commonwealth Trust

Dr. Renee Barcellona
Associate Director of Cybersecurity, EY

Dr. Alexandre Borde
Member of the CDM Registration and Issuance Team, UNFCCC

Travis Bradford
Founder and President, Prometheus Institute for Sustainable 
Development

Chantele Carrington
Chief Executive Officer, Invest Africa

Eric Chan
Chief Public Mission Officer, Cyberport

Frankie Chang
Chief Executive Officer, Forbes China Group

H.E. Daniel Francisco Chapo
President, Mozambique

His Majesty King Charles III
King of the United Kingdom

H.E. Professor Dr. M. Iqbal Chaudhary
Coordinator-General, OIC-COMSTECH

Benny Chen
Member of Youth Council, Shanghai Climate Week

Ravenna Chen
Chief Executive Officer, Intrinsic SEA

Johnson Chng
Asia Chairman, VenCap

Dai Mingjiang
Manager, WeCarbon

Ariane Dienstag
General Secretary, Council on Tall Buildings and Urban Habitat 
(CTBUH) French Chapter

Tony Dong
Chief Representative, Sino-International Entrepreneurs Federation

Sonia Dunlop
Chief Executive Officer, Global Solar Council

Rt. Hon. Dr. Ekperikpe Ekpo
Honourable Minister of State, Petroleum Resources (Gas), Nigeria

John Carlo Fatallo
Management Information Systems Office, Pasig City

Hon. Karim Fatehi OBE
Chief Executive Officer, London Chamber of Commerce and Industry 

Dr. Lamya Fawwaz
Executive Director, Masdar

Amb. Francisco Noel R. Fernandez
Director General of Foreign Service Institute, 
Philippine Department of Foreign Affairs

Lisa Fischer
Associate Director of Energy Transition, E3G

Kristian Flyvholm
Chair & Chief Executive Officer, Institute of Sovereign Investors

Dr. Fu Xiaolan
Founding Director, Technology and Management Centre for 
Development

Don Jaime Gaisano
Staffer, ABAC Philippines

Dr. Hosni Ghedira
Senior Advisor, ai71

Alyssa Gonzaga
Program Officer, APEC Business Advisory Council International 
Secretariat

Gu Hao
Head of Sustainability, CHINT Group

Floriane Gusciglio
General Delegate, ParisTech

Estelle Han
Initiating Founder, Global Artificial Intelligence for Sustainable 
Development Alliance (GAISD)

Abdelrhman Hatem
Founder, Electrify

Alice Ho
Chief Youth Officer, Global Alliance of Universities on Climate

Jason Ho
President, Macao Technology General Association

Hu Jianjun
Vice President, Siemens China

Huang Jingbo
Director of the United Nations University Institute in Macau

H.E. Jin Liqun
President and Chair of the Board of Directors, 
Asian Infrastructure Investment Bank

Sergey Kanavskiy
Executive Secretary, Shanghai Cooperation Organization Business 
Council 

Alejandro Diego Luis Giles R. Katigbak
Chief Risk Officer, PHINMA Corporation

Hon. Matt Kean
Chair of Climate Change Authority, Australia

Seema A. Khan
Senior Advisor, OIC-COMSTECH

Mohammed Abdul Mujeeb Khan
Project Manager, Clean Rivers

Dr. Mohamed Bashir Kharrubi
Board Member, Abu Dhabi Investment Group

Rembrandt Koppelaar
Lead for Global & EU DPP Regulations Observatory, CIRPASS-2

Alexander Kormishin
Chairperson, BRICS Youth Energy Agency

Imad Lahad
Global Chair of AI and Intelligence, APCO

H.E. Corinne Lepage
Former French Minister of the Environment & 
Former Member of the European Parliament

Li Yuxin
Consultant, WeCarbon

Dr. Li Zheng
President of the Institute of Climate Change and Sustainable 
Development, Tsinghua University

Liao Shuanghui
Chairman, Shanghai Jinsinan Institute of Finance

Dr. Tyne Lin
Chief Product Officer, Annto Logistics under Midea Group

Liu Qing
President, National Innovation Center par Excellence

Karla Mikhaela P. Lomibao
Program Officer, APEC Business Advisory Council International 
Secretariat

Tomy Lorsch
Founder and Chief Executive Officer, ComplexChaos

Dr. Lu Gang
Co-founder, BEYOND Expo

Guillermo M. Luz
Chairman, Liveable Cities Philippines

Dr. Lü Xuedu
Former Deputy Director-General, China’s National Climate Center

Nick Mabey
Chief Executive Officer, E3G

Dr. Shahid Mahmud
Senior Advisor, OIC-COMSTECH

Bernice Mendoza
Management Information Systems Office, Pasig City

Ivan Mozharov
Co-founder and Managing Partner, Offset8 Capital

Nan Junyu
Board Director and Vice President, CHINT Electric

Laura Nguyen
Partner, GenAI Fund

Ajay Bhushan Pandey
Vice President of Investment Solutions,
Asian Infrastructure Investment Bank

Sashwat Pandey
Founder, Young Sapiens Network

Alexander Peng
Vice President, Shanghai Humanoid Robot Innovation Incubator

Peng Peng
Secretary General, China New Energy Investment and Finance Alliance 

Peng Yucheng
Chief Executive Officer, Midas Innovation Group

Dr. Kaewkamol Karen Pitakdumrongkit
Interim Secretary General, PECC International Secretariat

Rao Wei
Deputy Secretary-General, Shanghai Climate Week

Jennifer Richards
Chief Executive Officer, Asia Pacific, Aon

Amandine Hardowar de Rosnay
Head of Sustainability & Inclusive Growth, Business Mauritius

Yukio Sakaguchi
President, Clean Energy Research Lab

Dr. David Sandalow
Co-Director of the Energy and Environment Concentration, 
School of International and Public Affairs at Columbia University

(Listed in alphabetical order of last name)

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

9493



Bibliography
Arora, N., Chakraborty, I., & Nishimura, Y. (2024). AI–Human Hybrids for Marketing 
Research: Leveraging Large Language Models (LLMs) as Collaborators. Journal of 
Marketing, 89, 43 - 70. https://doi.org/10.1177/00222429241276529.

Zhao, J., Wen, T., & Cheong, K. (2025). Can Large Language Models Be Trusted as 
Evolutionary Optimizers for Network-Structured Combinatorial Problems?. IEEE 
Transactions on Network Science and Engineering. 
https://doi.org/10.1109/tnse.2025.3592367.

Wu, X., Wu, S., Wu, J., Feng, L., & Tan, K. (2024). Evolutionary Computation in the 
Era of Large Language Model: Survey and Roadmap. IEEE Transactions on 
Evolutionary Computation, 29, 534-554. 
https://doi.org/10.1109/TEVC.2024.3506731.

Guang, J., Chao, J., Zong, T., Siya, C., Cui, C., & Jun, F. (2024). Data Redundancy 
Elimination and Noise Processing via Large Language Model Prompt Engineering. 
2024 10th International Conference on Big Data and Information Analytics 
(BigDIA), 818-825. https://doi.org/10.1109/BigDIA63733.2024.10808217.

Zhao, H., Chen, H., Yang, F., Liu, N., Deng, H., Cai, H., Wang, S., Yin, D., & Du, M. (2023). 
Explainability for Large Language Models: A Survey. ACM Transactions on 
Intelligent Systems and Technology, 15, 1 - 38. https://doi.org/10.1145/3639372.

Raiaan, M., Mukta, M., Fatema, K., Fahad, N., Sakib, S., Mim, M., Ahmad, J., Ali, M., & 
Azam, S. (2024). A Review on Large Language Models: Architectures, Applications, 
Taxonomies, Open Issues and Challenges. IEEE Access, 12, 26839-26874. 
https://doi.org/10.1109/ACCESS.2024.3365742.

Kumar, P. (2024). Large language models (LLMs): survey, technical frameworks, 
and future challenges. Artif. Intell. Rev., 57, 260. 
https://doi.org/10.1007/s10462-024-10888-y.

Yamin, M., Hashmi, E., Ullah, M., & Katt, B. (2024). Applications of LLMs for 
Generating Cyber Security Exercise Scenarios. IEEE Access, 12, 143806-143822. 
https://doi.org/10.1109/ACCESS.2024.3468914.

Thirunavukarasu, A., Ting, D., Elangovan, K., Gutierrez, L., Tan, T., & Ting, D. (2023). 
Large language models in medicine. Nature Medicine, 29, 1930-1940. 
https://doi.org/10.1038/s41591-023-02448-8.

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Yin, B., & Hu, X. (2023). 
Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond. 
ACM Transactions on Knowledge Discovery from Data, 18, 1 - 32. 
https://doi.org/10.1145/3649506.

Luccioni, A. S., Viguier, S., & Ligozat, A.-L. (2022, November). ChatGPT training 
estimated to emit 502 metric tonnes of carbon. AIAAIC Repository. https://ww-
w.aiaaic.org/aiaaic-repository/ai-algorith-
mic-and-automation-incidents/chatgpt-training-emits-502-metric-tons-of-car
bon

IEA (2025), Global data centre electricity consumption, by equipment, Base Case, 
2020-2030, IEA, Paris https://www.iea.org/data-and-statistics/charts/global-da-
ta-centre-electricity-consumption-by-equipment-base-case-2020-2030, 
Licence: CC BY 4.0

Chien, A., Lin, L., Nguyen, H., Rao, V., Sharma, T., & Wijayawardana, R. (2023). 
Reducing the Carbon Impact of Generative AI Inference (today and in 2035). 
Proceedings of the 2nd Workshop on Sustainable Computer Systems. 
https://doi.org/10.1145/3604930.3605705.

Bouza, L., Bugeau, A., & Lannelongue, L. (2023). How to estimate carbon footprint 
when training deep learning models? A guide and review. Environmental Research 
Communications, 5. https://doi.org/10.1088/2515-7620/acf81b.

Singla, A., Sukharevsky, A., Yee, L., Chui, M., & Hall, B. (2025, November 5). The state 
of AI: How organizations are rewiring to capture value. McKinsey. https://ww-
w.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai

Fayza, F., Demirkiran, C., Rao, S. P., Bunandar, D., Gupta, U., & Joshi, A. (2025). 
Photonics for sustainable AI. Communications Physics, 8, Article 403.

Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural 
network. University of Toronto.

Sze, V., Chen, Y.-H., Yang, T.-J., & Emer, J. S. (2017). Efficient processing of deep 
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 
2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

Patterson, D., Gonzalez, J., Le, Q. V., Liang, C., Munguia, L.-M., Rothchild, D., … Dean, J. 
(2021). Carbon emissions and large neural network training. Joule, 5(2), 1–13. 
https://doi.org/10.1016/j.joule.2021.02.001

Bello, S. F., Wada, I. U., Ige, O. B., Chianumba, E. C., & Adebayo, S. A. (2024). 
AI-driven predictive maintenance and optimization of renewable energy systems 
for enhanced operational efficiency and longevity. International Journal of 
Science and Research Archive, 13(1), 2823–2837.

Suci, A., Amini, R., Asri, A., & Martin, N. (2025). Artificial Intelligence in Renewable 
Energy: A Review of Predictive Maintenance and Energy Optimization. Journal of 
Clean Technology. https://doi.org/10.15294/joct.v2i1.27729.

Algburi, S., Abed Al Kareem, S. S., Sapaev, I. B., Mukhitdinov, O., Hassan, Q., Khalaf, D. 
H., & Jabbar, F. I. (2025). The role of artificial intelligence in accelerating renewable 
energy adoption for global energy transformation. Unconventional Resources. 
https://doi.org/10.1016/j.uncres.2025.100229.

Matias, Y., & Brandt, K. (2023). Accelerating climate action with AI. Google. 
https://blog.google/outreach-initiatives/sustainability/re-
port-ai-sustainability-google-cop28/ 

Shehabi, A., et al. (2016). United States data center energy usage report (Report 
No. LBNL-1005775). Lawrence Berkeley National Laboratory. https://eta.lbl.gov/-
publications/united-states-data-center-energy

Synergy Research Group. (2024). Hyperscale operators and colocation continue 
to drive huge changes in data center capacity trends. Synergy Research. 
https://www.srgresearch.com/articles/hyperscale-opera-
tors-and-colocation-continue-to-drive-huge-changes-in-data-center-capacity
-trends

Donnellan, D., et al. (2023). Uptime Institute global data center survey results 
2023. Uptime Institute. https://uptimeinstitute.com/resources/research-and-re-
ports/uptime-institute-global-data-center-survey-results-2023

Yin, Y., & Yang, Y. (2025). Sustainable Transition of the Global Semiconductor 
Industry: Challenges, Strategies, and Future Directions. Sustainability. 
https://doi.org/10.3390/su17073160.

Aruffo, C. (2025). Dii Editorial Q3 2025: Data centers and common user 
infrastructure: Two pathways from vision to bankable reality. Dii Desert Energy. 
https://dii-desertenergy.org/data-centers-and-common-user-in-
frastructure-two-pathways-from-vision-to-bankable-reality/

Synergy Research Group, “Synergy identifies the world’s top 20 locations for 
hyperscale data centers (62% of global capacity in just 20 metro markets).”

XDI, 2025 Global Data Centre Physical Climate Risk and Adaptation Report — 
analysis of nearly 9,000 data centers’ exposure to flooding, wildfires, extreme 
weather and climate-induced hazards.

International Energy Agency. (2024). Electricity 2024: Analysis and forecast to 
2026. Paris: IEA.

BloombergNEF. (2023). Corporate clean energy buying reaches new highs: Power 
purchase agreements and data center demand. Bloomberg Finance L.P.

Opeyemi Amure, T. (2025). The cloud computing risk for the economy that many 
don’ t see coming. Investopedia. https://www.investopedia.com/cloud-comput-
ing-risk-for-the-economy-11777456

Griffiths, C. (2025). The latest cloud computing statistics. AAG IT Support. 
https://aag-it.com/the-latest-cloud-computing-statistics

Shetty, M. (2025). Concentration of AI capabilities poses systemic risks: NPCI 
chairman. The Times of India.https://timesofindia.indiatimes.com/business/in-
dia-business/concentration-of-ai-capabilities-poses-systemic-risks-npci-chair
man/articleshow/124375101.cms

Mukewa, Z. (2025). Frontier AI and the return of systemic infrastructure risk. 
Medium. https://medium.com/@zackfolio/frontier-ai-and-the-re-
turn-of-systemic-infrastructure-risk-fc001622819d

National Telecommunications and Information Administration. (2024). Risks and 
benefits of dual-use foundation models with widely available model weights. U.S. 
Department of Commerce.https://www.ntia.gov/programs-and-initiatives/artifi-
cial-intelligence/open-model-weights-report/risks-benefits-of-dual-use-founda
tion-models-with-widely-available-model-weights

Wiaterek, J., Perlo, J., & Nur Adan, S. (2025). AI safety and security can enable 
innovation in Global Majority countries. The Brookings Institution.
https://www.brookings.edu/articles/ai-safety-and-securi-
ty-can-enable-innovation-in-global-majority-countries

Milmo, D., & Wearden, G. (2025). Amazon Web Services outage shows internet 
users ‘at mercy’ of too few providers, experts say. The Guardian. https://www.-
theguardian.com/technology/2025/oct/20/ama-
zon-web-services-aws-outage-hits-dozens-websites-apps

Caroline. (2025). Cloud outage resilience: Here’ s how to safeguard your business. 
Digital Craftsmen. https://www.digitalcraftsmen.com/insights/cloud-outage-busi-
ness-continuity-resilience

Jonathan E. Savoir
Chief Executive Officer, Quincus

H.E. Lalsaga Sayouba
Advisor to the President of Burkina Faso

Dr. Shi Yigong
President, Westlake University

Dr. Robert Slone
Senior Vice President and Chief Scientist and Innovation Officer, 
UL Solutions

Isaac Smith
Managing Director, Clarendon Capital

Hon. Warwick Smith AO
Former Federal Government Minister, Australia

Erik Solheim
Former Under-Secretary-General, United Nations

Froland Tajale
Lead Staffer, ABAC Philippines

Dr. Yan Tao
Head of Business & Ecological Development, 
Siemens China (SiTANJI) 

Frank Wouters
Chairman, MENA Hydrogen Alliance

Helen Wang
Treasury Department, Asian Infrastructure Investment Bank

Jeffrey Wang
GCA Supplier Operations Manager, Maersk

Nick Wang
President, Chindata

Dr. Wang Xin
Director, CGN Europe Industrial Innovation Company

Xiao Jie
General Manager, New Energy Nexus China

Xu Jieping
Chief Executive Officer, Plug and Play China

Dr. Xu Li
Chairman and Chief Executive Officer, SenseTime

Yuki Yamada
School of International and Public Affairs, Columbia University

Yang Ming
Board Secretary, TusStar

Yin Zheng
Executive Vice President of China and East Asia operations, 
Schneider Electric

Zhang Han
Head of Sustainability, Plug and Play China

Zhang Junyi
Chief Financial Officer, Sense Auto

Zhang Yang
Managing Partner, Cibola Partners & Partner, WeCarbon

Zhang Yueni
Consultant, WeCarbon

Zoe Zhang
Secretary General, Sino-International Entrepreneurs Federation

Lucia Zhao
Senior Associate, Clinton Health Access Initiative

Zhou Yiping
Founding Director, United Nations Office for South-South 
Cooperation

Shi Hao Zijdemans
Digital & Technology Specialist, Asian Infrastructure Investment Bank

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

40.

41.

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

9695



Covenco. (2025). Managing Business Risk in a World Built on Hyperscale Cloud. 
Covenco. https://covenco.com/insights/blog/managing-hyper-
scale-cloud-outage-risk

Principle. (2025). When the cloud crashes: Why centralized data centers are 
becoming a critical vulnerability in the AI era. Medium. https://medi-
um.com/@ReginaldBSimpsonII/when-the-cloud-crash-
es-why-centralized-data-centers-are-becoming-a-critical-vulnerability-in-the-
c88defbe2e5e 

Amoah, M., Bazilian, M. D., Matisek, J. F., & Schweiker, K. (2025, November 11). Data 
centers at risk: The fragile core of American power. Foreign Policy Research 
Institute. https://www.fpri.org/article/2025/11/data-cen-
ters-at-risk-the-fragile-core-of-american-power

Esparza, M., Li, B., Ma, J., & Mostafavi, A. (2025). AI Meets Natural Hazard Risk: A 
Nationwide Vulnerability Assessment of Data Centers to Natural Hazards and 
Power Outages. International Journal of Disaster Risk Reduction, 105583.

Hayes II, D. (2025). Disaster-proofing: The role of data infrastructure in natural 
disaster management. Forbes Business Council. 
https://www.forbes.com/councils/forbesbusinesscoun-
cil/2025/02/24/disaster-proofing-the-role-of-data-infrastructure-in-natural-dis
aster-management

Marrinan, C. (2025). Data center boom risks health of already vulnerable 
communities. TechPolicy.Press. https://www.techpolicy.press/data-cen-
ter-boom-risks-health-of-already-vulnerable-communities

Hale, C. (2025). Swiss government urges people to ditch Microsoft 365 and 
others due to lack of proper encryption. TechRadar Pro.
https://www.techradar.com/pro/security/swiss-government-urg-
es-people-to-ditch-microsoft-365-and-others-due-to-lack-of-proper-encryption

Wiaterek, J., Perlo, J., & Nur Adan, S. (2025). AI safety and security can enable 
innovation in Global Majority countries. The Brookings Institution. https://ww-
w.brookings.edu/articles/ai-safety-and-securi-
ty-can-enable-innovation-in-global-majority-countries

O’Flaherty, K. (2025). The unseen risks of cloud storage for businesses. ITPro. 
https://www.itpro.com/cloud/cloud-security/the-un-
seen-risks-of-cloud-storage-for-businesses

Cybersecurity Insiders. (2025). 2025 Cloud Security Report. https://www.cyber-
security-insiders.com/state-of-cloud-security-report-2025

National Telecommunications and Information Administration. (2024). 
Competition, innovation, and research. In Risks and benefits of dual-use 
foundation models with widely available model weights (U.S. Department of 
Commerce). https://www.ntia.gov/programs-and-initiatives/artificial-in-
telligence/open-model-weights-report/risks-benefits-of-dual-use-foundation-m
odels-with-widely-available-model-weights/competition-innovation-research

Onwusinkwue, S., Osasona, F., Ahmad, I. A. I., Anyanwu, A. C., Dawodu, S. O., Obi, O. 
C., & Hamdan, A. (2024). Artificial intelligence (AI) in renewable energy: A review 
of predictive maintenance and energy optimization. World Journal of Advanced 
Research and Reviews, 21(1), 2487-2499.

Ejiyi, C. J., Cai, D., Thomas, D., Obiora, S., Osei-Mensah, E., Acen, C., ... & Bamisile, O. 
O. (2025). Comprehensive review of artificial intelligence applications in 
renewable energy systems: Current implementations and emerging trends. 
Journal of Big Data, 12(1), 169.

Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T. C., & Madyira, D. M. (2024). Optimizing 
renewable energy systems through artificial intelligence: Review and future 
prospects. Energy & Environment, 35(7), 3833-3879.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., & Tian, Q. (2023). Accurate medium-range 
global weather forecasting with 3D neural networks. Nature, 619, 533–538. 

Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., ... & 
Anandkumar, A. (2023, June). Fourcastnet: Accelerating global high-resolution 
weather forecasting using adaptive fourier neural operators. In Proceedings of 
the platform for advanced scientific computing conference (pp. 1-11).

Estrada, F., Tol, R. S. J., & Botzen, W. (2025). Economic consequences of spatial 
variation and temporal variability of climate change. Ann NY Acad Sci., 1547, 
170–182. https://doi.org/10.1111/nyas.15335

Huawei Cloud. (2023). Pangu-Weather from Huawei Cloud outperforms NWP 
methods in terms of accuracy for medium-range forecast. Huawei Cloud. 
https://www.huaweicloud.com/intl/en-us/about/blogs/20230707.html 

Gambhir, A. (2019). A review of criticisms of Integrated Assessment Models. 
Energies, 12(9), 1747. 

Bruno, J. H., Jervis, D., Varon, D. J., & Jacob, D. J. (2024). U-Plume: automated 
algorithm for plume detection and source quantification by satellite point-source 
imagers. Atmospheric Measurement Techniques, 17, 2625–2636. 
https://doi.org/10.5194/amt-17-2625-2024  

Rouet-Leduc, B., Kerdreux, T., Tuel, A., & Hulbert, C. (2024). Automatic detection of 
methane emissions in multispectral satellite data using deep learning. Nature 
Communications. Advance online publication. 
https://doi.org/10.1038/s41467-024-47754-y   

Vaughan, A., Mateo-García, G., Gómez-Chova, L., Růžička, V., Guanter, L., & 
Irakulis-Loitxate, I. (2024). CH4Net: a deep learning model for monitoring methane 
super-emitters with Sentinel-2 imagery. Atmospheric Measurement Techniques, 
17, 2583–2593. https://doi.org/10.5194/amt-17-2583-2024  

Global Forest Watch. (2024). Integrated deforestation alerts. https://www.global-
forestwatch.org/blog/data-and-tools/integrated-deforestation-alerts/  

Global Forest Watch. (2021). Higher resolution alerts offer more detailed 
picture of forest loss: GLAD-S2 alerts provide enhanced monitoring of 
deforestation. https://www.globalforestwatch.org/blog/da-
ta-and-tools/glad-s2-offers-high-resolution-deforestation-alerts/  

Zuo, J., Li, Z., Xu, W., Zuo, J., & Rong, Z. (2025). Automated Detection of Methane 
Leaks by Combining Infrared Imaging and a Gas-Faster Region-Based 
Convolutional Neural Network Technique. Sensors, 25(18), 5714. https://-
doi.org/10.3390/s25185714

Andersson, T. R., Hosking, J. S., Pérez-Ortiz, M., Paige, B., Elliott, A., Russell, C., ... & 
Shuckburgh, E. (2021). Seasonal Arctic sea ice forecasting with probabilistic deep 
learning. Nature communications, 12(1), 5124.

The Alan Turing Institute & British Antarctic Survey. (2022, December). IceNet: 
Faster, more accurate sea ice forecasting with a new AI-based tool (ASG briefing 
paper). The Alan Turing Institute. https://www.turing.ac.uk/sites/default/-
files/2023-05/asgbriefing_icenet_final.pdf

Andersson, T., & Hosking, J. (2021). Dataset record for IceNet sea-ice probability 
forecasts (SIP), 6-month lead time, 25 km resolution [Data set]. NERC EDS UK 
Polar Data Centre. http://www.antarctica.ac.uk/dms/metadata.php?id=GB/NER-
C/BAS/PDC/01526

Google Research. How we are using AI for reliable flood forecasting at a global 
scale (Flood Hub).

Google Research. (n.d.). Flood forecasting: AI for information & alerts. Google. 
https://sites.research.google/floodforecasting

IEA. (2024). Maintaining a stable electricity grid in the energy transition. 
https://iea.blob.core.windows.net/assets/cd1-
eac26-6a3e-415a-94fd-3afda4d4ac42/IEA-maintaining-a-stable-electricity-grid
-in-the-energy-transition-Jan2024.pdf

European Wind Energy Association. (2009). The economics of wind energy. 
EWEA. https://www.ewea.org/fileadmin/files/library/publications/re-
ports/Economics_of_Wind_Energy.pdf

The Brattle Group. (2018, May 3). Defining reliability for a new grid: Maintaining 
reliability and resilience through competitive markets. The Brattle Group. 
https://www.brattle.com/insights-events/publications/defin-
ing-reliability-for-a-new-grid-maintaining-reliability-and-resilience-through-com
petitive-markets.

United Nations Environment Programme Finance Initiative. (2025). Bridging 
climate and credit risk: Current approaches and emerging trends for climate-re-
lated credit risk assessment methodologies — insights from a global survey (pp. 
ix). UNEP FI. https://www.unepfi.org/wordpress/wp-content/up-
loads/2025/07/Bridging-Climate-and-Credit-Risk.pdf

European Central Bank. (2025, July 11). Banks have made good progress in 
managing climate and environmental risks [Blog post]. ECB. https://www.ecb.eu-
ropa.eu/press/blog/date/2025/html/ecb.blog20250711~f5c6a0259f.en.html

United Nations Environment Programme Finance Initiative. (2025). Bridging 
climate and credit risk: Current approaches and emerging trends for climate-re-
lated credit risk assessment methodologies — insights from a global survey (pp. 
ix). UNEP FI. https://www.unepfi.org/wordpress/wp-content/up-
loads/2025/07/Bridging-Climate-and-Credit-Risk.pdf

World Bank. (2022). Digital monitoring, reporting, and verification systems and 
their application in future carbon markets. World Bank. http://hdl.han-
dle.net/10986/37622

W3C. (2022). Verifiable Credentials Data Model v1.1. World Wide Web 
Consortium. https://www.w3.org/TR/vc-data-model/

Kothari, S. (2025). Leveraging natural language processing for automated 
regulatory compliance in financial reporting. Global Journal of Engineering and 
Technology Advances, 23(3), 91–99. https://doi.org/10.30574/gje-
ta.2025.23.3.0187

Baviskar, D., Ahirrao, S., Potdar, V., & Kotecha, K. (2021). Efficient automated 
processing of the unstructured documents using artificial intelligence: A 
systematic literature review and future directions. IEEE Access, 9, 72894–72936. 
https://doi.org/10.1109/ACCESS.2021.3072900

McKinsey & Company. (2025). Corporate start-up partnerships satisfaction rates 
and success factors. McKinsey Report on Corporate-Startup Collaboration. 
https://www.mckinsey.com/capabilities/strategy-and-corpo-
rate-finance/our-insights/collaborations-between-corporates-and-start-ups

International Telecommunication Union. (2025). AI for Climate Action Innovation 
Factory: Challenge structure and outcomes. AI for Good, International 
Telecommunication Union.  https://aiforgood.itu.int/about-us/ai-for-climate-ac-
tion-innovation-factory

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

OpenAI. (2024). Introducing the GPT Store. Retrieved from https://openai.com/in-
dex/introducing-the-gpt-store/

Patel, N. (2025). OpenAI launches ChatGPT App Directory and Apps SDK. The 
Verge. https://www.theverge.com/news/847067/openai-app-store-directo-
ry-sdk-chatgpt

Wikipedia. (2025). Model Context Protocol. Retrieved from https://en.wikipe-
dia.org/wiki/Model_Context_Protocol

Shell. (2023). Shell.ai Hackathon for Sustainable and Affordable Energy. 
https://www.shell.com/energy-and-innovation/digitalisa-
tion/shell-ai-hackathon.html

Enel. (2024). Open innovation and challenges. https://www.enel.com/compa-
ny/innovation/open-innovation

Elewit. (2023). Innovation challenges and data-driven solutions. https://www.ele-
wit.si/challenges

GEN-I. (2023). GEN-I trading and analytics challenges. https://gen-i.eu/ca-
reers/challenges

Organisation for Economic Co-operation and Development. (n.d.). Official 
development financing (ODF) receipts dataset [Data set]. OECD Data Explorer. 
Retrieved December 20, 2025, from 
https://data-explorer.oecd.org/vislc=en&df[ds]=DisseminateFi-
nalDMZ&df[id]=DSD_DAC2%40DF_RECPTS&df[ag]=OECD.DCD.FSD&df[vs]=1.0

United Nations Framework Convention on Climate Change (UNFCCC) Technology 
Executive Committee, 2024. Artificial Intelligence for Climate Action: Opportuni-
ties, Challenges, and Risks. [online] Available at: 
https://unfccc.int/ttclear/misc_/StaticFiles/gnwoerk_static/t-
n_meetings/43ef8d5f37e6484ca634479e3b74a3a8/3ee3862a08c84afe971c29f
2687a45f1.pdf.

Bills, T. S., & Ji, K. (2025). Wildfire recovery and resilience strategies for 
resource-constrained and vulnerable communities. UCLA Institute of 
Transportation Studies. 
https://www.its.ucla.edu/publication/wildfire-recovery-and-re-
silience-strategies-for-resource-constrained-and-vulnerable-communities.

Jalal, A., Mohsenian-Rad, H. and Aliprantis, D.C., 2023. Privacy Preservation in 
Smart Meters: Current Status, Challenges, and Future Directions. Sensors, 23(7), 
p.3456. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10098615/.

Stockholm Resilience Centre, 2024. AI could create a perfect storm of climate 
misinformation. [online] Available at: 
https://www.stockholmresilience.org/publications/publica-
tions/2024-10-21-ai-could-create-a-perfect-storm-of-climate-misinformation.h
tml

Friedrich, A., Asquith, N. et al.(2024). Applications of generative artificial 
intelligence to influence climate decisions. Nature Human Behaviour. Available at: 
https://www.nature.com/articles/s44168-024-00202-5

PRISM Sustainability Directory. (2025). Transparency for AI driven climate policy 
making. https://prism.sustainability-directory.com/scenario/transpar-
ency-for-ai-driven-climate-policy-making/

International Energy Agency. (2025). Energy and AI. International Energy Agency. 
https://www.iea.org/reports/energy-and-ai

Bouza, L., Bugeau, A., & Lannelongue, L. (2023). How to estimate carbon footprint 
when training deep learning models? A guide and review. Environmental Research 
Communications, 5. https://doi.org/10.1088/2515-7620/acf81b.

Environmental and Energy Study Institute. (2025). Data centers and water 
consumption. https://www.eesi.org/articles/view/data-centers-and-water-con-
sumption

Wang, P., Zhang, LY., Tzachor, A. et al. E-waste challenges of generative artificial 
intelligence. Nat Comput Sci 4, 818–823 (2024). https://-
doi.org/10.1038/s43588-024-00712-6

United Nations. (2024a). General Assembly adopts landmark resolution on 
artificial intelligence. UN News. Retrieved July 21, 2024, Available at 
https://news.un.org/en/story/2024/03/1147831

Sothy, E. (2025) The hidden costs of artificial intelligence, The Varsity, 5 October. 
Retrieved from https://thevarsity.ca/2025/10/05/the-hidden-costs-of-artifi-
cial-intelligence/

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

CLIMATETECH IN FOCUS
ARTIFICIAL INTELLIGENCE FOR SUSTAINABILITY

97




