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Africa Beyond Oil And Gas
Low-Carbon Technologies And The Fourth Industrial 
Revolution Opportunities For Africa
By Thelma Arko

Summary: 
The drive towards a decarbonized economy is much more urgent in this decade as we have ten years remaining 
to half emissions and keep global warming to 1.5oC.  The increasing pressure to move away from fossils, pres-
ents serious risks particularly to emerging fossil fuel producing African countries, hoping to transform their 
economies with prospects from the sector. However, the increasing demand for metals and minerals needed to 
produce low-carbon technologies, is opening enormous market opportunities for the mining sector. This holds 
great promise for Africa, possessing rich deposit of the minerals needed not only for the low-carbon future but 
also for automated future of the rapidly emerging Fourth Industrial Revolution (4IR). The full spectrum of min-
eral wealth that African nations hold is sparsely known. There is also a lack of understanding of how countries 
with significant mineral deposits can take advantage of the low carbon technology and 4IR to support sustain-
able development. Through an extensive review of literature and synthesis of available data, this paper presents 
a comprehensive report of the distribution of Africa’s mineral wealth and interrogates the development options 
this present to African countries in a low carbon future. This study reveals that Africa holds 42 of the 66 ele-
ments required for the emerging low carbon future and the Fourth Industrial Revolution. The paper also presents 
some of the appropriate governance mechanisms, African governments can adopt to be rightly positioned to take 
advantage of the enormous opportunities presented by the low-carbon future to create wealth and explore new 
opportunities to bolster economic growth.
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Fig 1: Geological Map of Africa’s mineral resources 
Source: SEMS exploration, The African Geological Consultancy Group
1 The 4IR describes a world where individuals move between digital domains and offline reality with the use of connected technology to enable 
and manage their lives (Xu et al., 2018)
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The rapid transition to low-carbon technologies will result in  a rapid decline in demand for  fossil fuel resources 
(Bradley, Lahn, & Pye, 2018) and increase the demand for large quantities of metals and minerals (Vidal, Goffé, 
& Arndt, 2013;Addison, 2018), including: aluminum, copper, iron ore, lead, lithium, nickel, manganese, silver, 
steel, titanium and zinc copper, cobalt and chrome , the platinum group metals, Rare Earth Elements (REE) 
(Woude, 2019;World Bank, 2017). Wind technologies require Copper, Aluminum, Chromium, Iron, Lead, Man-
ganese, Nickel, Zinc, Titanium, Silver, Cobalt, Platinum, Molybdenum and neodymium, Rare earth metals (Rene 
Kleijn & Van Der Voet, 2010; World Bank, 2017b;The World Bank, 2019). Solar PV Aluminum, Silicon, Silver, 
Tin, Lead, Copper, Indium, Iron, Nickel, Zinc, Gallium, Cadmium, Chromium, Germanium, Tellurium, Rubidi-
um, Caesium (Achzet, Reller, Rennie, Ashfield, & Simmons, 2011; World Bank, 2017b; The World Bank, 2019). 
The strong growth in fuel cells to power zero-carbon vehicles, will see a considerable demand growth for lithium, 
lead,  copper, nickel, platinum neodymium, vanadium, cobalt and manganese (International Energy Agency, 
2019; García-Olivares, Ballabrera-Poy, García-Ladona, & Turiel, 2012;Rene Kleijn & Van Der Voet, 2010; World 
Bank, 2017b). 

The Fourth Industrial Revolution (4IR) a term coined by Klaus Schwab, founder and executive chairman of the 
World Economic Forum, describes a world where individuals move between digital domains and offline reality 
with the use of connected technology to enable and manage their lives (Schwab, 2015).  Digitization and auto-
mation are the foundation of the 4IR, rapidly revolutionizing every aspect of modern society (Komatsu Mining 
Corp., 2019).  The 4IR is leading to breakthroughs, in: (1)artificial intelligence (AI) robotics (such as machine 
learning); (2) nanotechnology; (3) biotechnology; (4) quantum computing; (5) blockchain; (6) the Internet of 
Things (IoT); (7) 3D-printing, etc (Humphreys, 2019;Effoduh, 2016; Xu et al., 2018;Dilberoglu, Gharehpapagh, 
Yaman, & Dolen, 2017). Material requiremets of the 4IR include: Cobalt, Aluminium, Gallium, Cobalt, Titanium, 
Indium, Nickel and lithium, Tungsten, REE   (Addison, 2018; Dilberoglu et al., 2017). (Table 1). 

Solar Panels Wind Technology Battery Storage/Fuel Cells 4IR materials
Cd, Cu, Si, Te, Cu, In, As, Al, 
Ge, Ni, Se, Sn, Fe, Zn, Pb, 
Ag, Ti, K, Ni, Zn, Ga, Cr

Al, Fe, Mo, Cd, Pb, Co, 
Mn, Zn, Cu, Cr, Ni, Ti, Ag, 
Pt, Nd and other REE

H, Li, C, Li, REE, Co, Cu, Fe, Mn, 
Si, Cu, Pb, Ni, Ti, Ca, Pt, Nd, V

Co, Al, Ga, Ti, In, Ni, Li, W 
and  REE

Table 1: Minerals needed for solar technology, wind technology, electric vehicles and energy storage. 
Source: Author compiled from various sources

2 Rare Earth Elements (REE) are a group of 17 chemically similar metallic elements including the 15 Lanthanide series elements, 
plus yttrium and Scandium. is found in most REE deposits and so sometimes classified as an REE. They range from atomic 
numbers 51-71 (King, 2019;BGS, 2019b).

Transitioning from fossil fuel dependence, towards a low-carbon, automated future is opening up new opportu-
nities for a different set of strategic resources (International Energy Agency, 2019). Low-carbon technologies and 
the Fourth Industrial Revolution (4IR) will require a substantial increase in the volume of mined minerals and 
metals than is currently produced (World Bank, 2017a). About six times (6x) increase in iron/steel  production 
is needed to service wind turbines (Addison, 2018), About seventy times (70x) of the current production of cop-
per (Kleijn & Van Der Voet, 2010)  is needed to transmit electricity generated from clean energy. This opens up 
enormous market opportunities-for Africa, holding rich deposits of these minerals (International Energy Agency, 
2019). 
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South Africa produces 70% of the 
world’s platinum needed to produce 
many computers, mobile phones, to 
catalytic converters (OECD, 2019)

70% 

67% 

 Africa is host to 42 of the 66 elements

Namibia and Zimbabwe have 100% of the world’s cesium 
reserves and 89% of the world’s rubidium reserves

DRC holds 67% of the world’s 
cobalt reserves (Statista, 2019)

42 of the 54 African countries have 
deposits of these strategic minerals

Minerals for low carbon technologies 
and the 4th industrial revolution

The rapid changes being brought about by low carbon technologies and the 4th industrial revolution (Xu et al., 
2018) offers great opportunities for Africa being host 42 of the 66 elements needed for 4IR. (Fig 1). Forty-two 
(42) of the 54 African countries have deposits of these strategic minerals.  Africa holds two-thirds of global 
cobalt production, 80% of platinum, half of manganese production (International Energy Agency, 2019) and 
32% of the world’s bauxite resources (U.S. Geological Survey, 2019). The Democratic Republic of the Congo is 
the world’s leading source of cobalt (U.S. Geological Survey, 2019), accounting for two-thirds of global cobalt 
production (65%) (Statista, 2019) . Rwanda and DR Congo both produce tantalum (about 30% and 40% of the 
global supply respectively) critical for electronics. Namibia and Niger are producers of uranium (World Nuclear 
Association, 2019) critical for nuclear power plants (International Energy Agency, 2019). Morocco and Namibia, 
the world’s second and third largest producer of arsenic (U.S. Geological Survey, 2019). Congo (Kinshasa) and 
Rwanda accounted for 66% of estimated global tantalum production in 2018 (U.S. Geological Survey, 2019). 
Namibia and Zimbabwe hold 100% of the world’s Cesium reserves and 89% of the world’s Rubidium reserves 
(U.S. Geological Survey, 2019)-needed for the manufacture of  photoelectric cells. Africa is also home to rare 
earth elements with rich deposits in South Africa (Steenkampskraal, 2019)

Morocco and Namibia, the world’s second and third 
largest producer of arsenic (U.S. Geological Survey, 2019)

Africa holds two-thirds of global cobalt production, 80% of 
platinum, half of manganese production (International Energy 
Agency, 2019) and 32% of the world’s bauxite resources 
(U.S. Geological Survey, 2019)
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Fig 2: Different minerals and metals found in mobile phones
Source: Compound Interest 2014

Magnesium compounds are alloyed to make 
some phone cases, whilst many are made of 
plastics. Plastics will also include flame retardant 
compounds, some of which contain bromine, 
whilst nickel can be included to reduce electro-
magnetic interference.

Copper is used for wiring in the 
phone, whilst copper, gold and silver 
are the major metals from which 
micro-electrical components are 
fashioned. Tantalum is the major 
component of micro-capacitors.

Elements colour key:
• Alkali Metal        • Alkaline Earth Metal        • Transition Metal        • Group 13        
• Group 14          • Group 15        • Group 16        • Halogen        • Lanthanide

The majority of phones use lithium ion batteries, which 
are composed of lithium cobalt oxide as a positive 
electrode and graphite (carbon) as the negative 
electrode. Some batteries use other metals, such as 
manganese, in place of cobalt. The battery’s casing is 
made of aluminum.

Electronics

Elements Of A Smartphone
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Nickel is used in the microphone as 
well as for other electrical connec-
tions, Alloys including the elements 
praseodymium, gadolinium and 
neodymium are used in the magnets 
in the speaker and microphone. 
Neodymium, terbium and dysprosi-
um are used in the vibration unit.

Pure silicon is used to manufacture 
the chip in the phone. It is oxidized 
to produce non-conducting regions, 
the other elements are added in 
order to allow the chip to conduct 
electricity.

Tin & led are used to solder electron-
ics in the phone. Newer lead-free 
solders use a mix of tin, copper and 
silver.
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8
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Si
28.086

14
aluminium
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26.982

13
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K
39.098

19
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film in the screen that conducts electricity. This allows 
the screen to function as a touch screen.

Th glass used on the majority of smartphones is an 
aluminosilicate glass, composed of a mix of alumina 
(Al2O3) and silica (SiO2). This glass also contains 
potassium ions, which help to strengthen it.

A variety of Rare Earth Element compounds are used 
in small quantities to produce the colours in the smart-
phone’s screen. Some compounds are also used to 
reduce UV light penetration into the phone.

3 https://www.techwalla.com/articles/what-materials-are-used-to-make-cell-phones
4 https://www.compoundchem.com/wp-content/uploads/2014/02/The-Chemical-Elements-of-a-Smartphone-v2.png
5 Digitization is the process of converting non-digital information into digital data.
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Fig 3: Periodic table highlighting elements relevant for the 4IR
Source: UNU-INRA
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Country Mineral Resources

Botswana Fe, U, Ni, Cu, Co, Pt, Au, Pd, Ag, Graphite, Cr, Mn

Mozambique Bauxite, Au, Graphite, Ta, Ti, Zr, Cu, Fe, V, Al, Pb, Nb

Namibia As, U, Rh, Zn, Au, Cu, Pb, Mn, Li, Ag, Graphite, Fe, F, Cs, Rb

Zambia Cu, Co, Au, Pb, Rh, Fe, Zn, Mn, Ni

Zimbabwe Pd, Pt, other PGM’s, Cr, Rh, Au, Co, Au, Graphite, Li, Ni, Phosphate, Cu, W, Cs, Rb, Ag

Angola Fe, Cu, U, Pb, Zn, Sn, V, Ni, Au, 

 DRC Co, Cu, Au, Ag, Sn, Zn, W, Ta, Li, Pb, Nb

Congo Au

Tanzania Au, Al, Cu, Graphite, Ag, Ni, U, Ti, Phosphate, Sn

Niger Au, Ag, Sn, U, Ni

Burkina Faso Au, Zn, Mn, Cu, Mo, Pb, Ag

Mali Au, Phosphate, Al, Cr, Cu, Fe, Pb, Li, Mn, Ni, Ag, Ti, U, W 

Kenya Ti, Zr, Au, Mn, Zr, F

Senegal Phosphate, Ti, Zr, Au, Fe, Ag

Ghana Bauxite, Au, Mn, Li, Ag, Al

Gabon Mn, Au, 

Egypt Phosphate, Al, Au, Fe, Mn, Sn, F

Ethiopia Pt, Pd, Nb

Togo Phosphate, Au

Morocco As, Co, Phosphate, Cu, Au, Fe, Mn, Ni, Ag, Zn, F, Pb

Ethiopia Ta, Au, Ag

Nigeria Ta, Sn, Al, Au, Fe, Pb, Zr, Ag, Zn, Nb, W

Rwanda Ta, Sn, W, Au, Be, Nb

Mineral Production/Deposits in Africa
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Sierra Leone Ti, Bauxite, Au, Fe, Zr

Guinea Al, Fe, Au

Madagascar Graphite, Cr, Co, Au, Ni, Zr, Cu, Be, Ti

Cameroon Al, Au

Sudan Cr, Au, Fe, Mn, Ag, Zn

Uganda Co, Au, Fe, Ta, Sn, W

Benin Au

Central African 
Republic 

Au, 

Equatorial Guinea Au

Ivory Coast Au, Mn, Ni, Ag

Liberia Au, Fe

South Sudan Au

Algeria Au, Fe, Ag, Zn

Burundi Au, Ta, Sn, W, Nb

Eritrea Au, Ag, Zn

Mauritania Au, Fe

Malawi Fe, U

Swaziland Fe

Tunisia Fe, Zn, P

Table 2: Mineral Production/Deposits in Africa
Source: Author based on British Geological Survey, 2017;U.S. Geological Survey, 2019; World Bank, 2017b and 
Global Business Reports, 2016
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Table 3: South Africa’s Mineral Resources for the 4th Industrial revolution 
Source: Author compiled from a variety of sources

South Africa has the highest-grade rare earth’s metal mine in the world useful for cell phones, computer memory, 
wind turbines and cell phone batteries. (Fig 4)

South Africa holds greater promise for these prospects, with 35 of the key minerals and currently producing 25 
(Minerals Council South Africa, 2019). (Table  2). South Africa has the largest deposit (70%) of PGM`s (used 
both in internal combustion engines and fuel cells) and second largest deposits and the leading global producer 
of chromium (U.S. Geological Survey, 2019), South Africa produces 70% of the worlds platinum, 45% of the 
chromium (used in wind turbines) and a third (74%) of the world’s manganese (a vital element for steel and 
advanced batteries) (International Energy Agency, 2019; U.S. Geological Survey, 2019). South Africa also has 
rich deposits of platinum, vermiculite, chromium, palladium, zirconium, vanadium, rutile, ilmenite, manganese, 
and gold, including the exceptionally rare PGM’s among others (Global Business Reports, 2016). South Africa, 
mines at least five of the 16 minerals/metals used to produce solar panels, namely iron ore, lead, phosphate rock, 
silica and titanium oxide (Harvey, 2019).

Mineral % of Worlds Production

Antimony 16.7

Chromium 45

 Copper 2.4

Gold 12.7

Iron 0.8

Lead 2.1

Manganese Ore 80

Nickel 5.2

PGM’s 87.7

Phosphate 5.3

Titanium 9.8

Uranium 8

Vanadium 32

Zinc 3.3

Zirconium 25

Silicon 1

Fluorspar (F) 17

Cobalt 1.6

Aluminum *

Silver *

Rhodium *

Tellurium 1.6

Rare Earth Metals *

UNU-INRA Policy brief | August 2020

South Africa’s Mineral Resources for the 
4th Industrial revolution
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There is a particular concern about growing economic importance and high risk of supply shortage of some of 
these critical metals”, delivering new low-carbon energy, transport and digital technologies (MineralsUK, 2017; 
Living With Environemental Change, 2015). Among these are: antimony, beryllium, cobalt, gallium, germanium, 
graphite, indium, magnesium, niobium, platinum group metals, rare earth elements, tantalum, tungsten. This 
calls for efficient use and recycling of these materials (BGS, 2019a). 

African countries enriched with these strategic minerals must develop strong governance structures and the 
right capacities and strategies to enable them realize maximize the benefit of these resources. African govern-
ment must apply the right fiscal policies to enhance their competitiveness and attract investments (Dobbs et al., 
2013). About 37% of reserves of minerals and metals  are in countries with weak resource governance (Tilley & 
Manley, 2017). Though global poverty is falling, many mineral-rich African countries like the DRC, Zambia, and 
Zimbabwe have rising poverty levels (FERREIRA, LAKNER, & SÁNCHEZ-PÁRAMO, 2017;Arndt, McKay, & 
Tarp, 2016). Zimbabwe’s output of lithium is far below other producing countries, despite having much larger 
reserves). Fragile states like the DRC risk missing the many development benefits of a future in which low-carbon 
pathways generate a rising demand for their metals and minerals (Addison, 2018). 

Fig 4: Relative economic value of the rare earth metals at Steenkampskraal mine in Western Cape South Africa.
Source: Steenkampskraal (2019)

Terbium 5%

Lanthanum 2% 
Gadolinium 3%
Holmium 1%
Yttrium 1%

Neyodymium 55%

Praseodymium 19%

Others 7%

Dysprosium 8%

Cerium 5%

Next steps

About 37% of reserves of minerals and metals  
are in countries with weak resource
(Tilley & Manley, 2017)

37%
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African governments must prepare to provide critical infrastructure-road/rail facility, water supply and power. 
This can be done in synergy with the development plans of the community to enable  development of  not only 
the natural resources but also enable greater community engagement in economic activity associated with mining 
and by that promote development of local communities and diversification of the economy (Dobbs et al., 2013). 
African government expecting to be relevant in metals and minerals market for the low carbon future must begin 
to decarbonize their energy system by increasing the share of renewables in the power supplied to mines, and in 
the transport system which serves them reducing their own GHG emissions (Addison, 2018). 

African governments must be well prepared by building their capacity on contracting (Dobbs et al., 2013; UNE-
CA, 2011). governments’ interactions with extractive companies, it is particularly important that they have strong 
market intelligence that encompasses prices, trends, investment dynamics, the economics of exploration, and the 
drivers of domestic competitiveness (Dobbs et al., 2013)

African governments must begin to diversify their economies to be less dependent on fossil fuel and begin to 
design policies and approaches to take advantage of the emerging markets of the low carbon future and the 4th 
Industrial revolution. 

Governments must develop a mineral beneficiation strategy to enable them realize the full potential of their min-
eral wealth. In the resources sector, this often means creating new industries that process a country’s resources 
rather than export raw materials.( refining and manufacturing processes) makes substantial contributions to 
economic development through employment, skills development, and supply chains (Dobbs et al., 2013). a re-
sources boom can also be an opportunity to create a step change in agricultural productivity. A rapidly growing 
resources sector can create rising prosperity and therefore increase the demand for food. At the same time, a 
resources boom can reinforce urbanization through the migration of people from rural areas to cities by creating 
demand for local services and potentially public-sector employment. Higher demand for food and fewer people 
working on farms is an opportunity to adopt new techniques to improve agriculture productivity—indeed, doing 
so is a necessity.

UNU-INRA Policy brief | August 2020

Policy Considerations

1. Africa’s knowledge of the scale and distribution of these mineral and metal resources remains is limited. 
There should be increase investments in mineral mapping and exploration to provide sufficient data on 
the deposits and reserves of these resources.

 
2. Governments need to develop an industrialization strategy to take advantage of the opportunities associ-

ated with the 4th industrial revolution such as electric vehicles and robotics. 

3. Restructure their governance structures and be well placed to benefit from the resource boom that is 
emerging from the low-carbon transition Weak resource governance deters the investment necessary to 
develop the sector and provide the revenues. (Addison, 2018).

4. African governments should put in place measures to ensure sustainable production, consumption and 
recycling of critical metals.
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